Interrogation écrite nº 1 lundi 18 septembre 2023

NOM:	PRÉNOM :	
Dans tout l'énoncé, ${\cal A}$ e	${\cal C}$ désignent des propositions.	
1) Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Do	onner la définition de la racine $n^{ m i \grave{e}me}$ d'un réel positif $x.$	
2) Qu'est-ce que l'ensen	ble des réels x vérifiant $ x \geqslant \sqrt{7}$?	
3) Nier la proposition		
$\forall \varepsilon \in \left]1;3\right],$	$\exists \delta > 0, \forall x \in \mathbb{R}, (1 < y \le 1 + \delta) \implies \ln(y) > \varepsilon(y - 1).$	
4) Corriger la grave erre	ur de rédaction dans la phrase :	
N.I.	n(n+1)	
IV	otons $P(n)$ la proposition « Pour tout $n\in\mathbb{N}^*$, $S_n=rac{n(n+1)}{2}.$ »	
	laction de l'étape d'hérédité dans la démonstration par récurrence d'une proprié	té P
portant sur les entiers na	turels (initialisée à $n_0=1$).	
5) Pour exprimer que (\mathcal{C}	\Rightarrow $\mathcal{A})$, on peut dire (barrer les phrases incorrectes) :	
ullet est une condition		
$ullet$ Pour que ${\mathcal A}$ soit v	aie, il suffit que ${\mathcal C}$ soit vraie.	
$ullet$ Si ${\mathcal C}$ est fausse, alo	rs ${\mathcal A}$ est fausse.	
$ullet$ Pour que ${\mathcal A}$ soit fa	usse, il faut que $\mathrm{non}(\mathcal{C})$ soit vraie.	
6) Écrire la rédaction ty	be de la démonstration de $(\mathcal{C}\Rightarrow \mathrm{non}(\mathcal{A}))$ par l'absurde.	

7) Soient u , v et w des réels tels que $u<0$ et $v^2-4uw>0$. Pour quelles valeurs du réel x a-t-on $ux^2+vx+w\leqslant 0$?
8) Soit A une partie non vide et majorée de $\mathbb R$. Énoncer la caractérisation de la borne supérieure de A et l'accompagner d'un dessin.
r accompagner u un uessin.
9) Soit Q une propriété portant sur les éléments d'un ensemble F . A l'aide de quantificateurs, exprimer le fait qu'aucun des éléments de F ne vérifie la propriété Q .
10) Soient x et y deux réels tels que $x < y < 0$. Sous quelles hypothèses sur $n \in \mathbb{Z}^*$ a-t-on $x^n > y^n$?

Interrogation écrite nº 1 lundi 18 septembre 2023

NOM:	PRÉNOM :
Dans tout l'énoncé, ${\cal B}$ et ${\cal D}$ dés	gnent des propositions.
1) Pour exprimer que $(\mathcal{B}\Rightarrow\mathcal{D})$	on peut dire (barrer les phrases incorrectes) :
$ullet$ Pour que ${\cal B}$ soit vraie, il s	ıffit que ${\cal D}$ soit vraie.
$ullet$ Si ${\mathcal D}$ est fausse, alors ${ m non}$	(\mathcal{B}) est vraie.
$ullet$ Pour que ${\cal B}$ soit fausse, il	faut que ${\mathcal D}$ soit fausse.
$ullet$ ${\cal D}$ est une condition néces	saire de ${\cal B}.$
2) Soit R une propriété portanqu'un élément de G et un seul	sur les éléments d'un ensemble G . A l'aide de quantificateurs, exprimer le fait le vérifie pas R .
3) Soit A une partie non vide l'accompagner d'un dessin.	et minorée de $\mathbb R$. Énoncer la caractérisation de la borne inférieure de A et
4) Donner la définition de la pa	tie entière d'un réel x (sans démonstration).
E) Nieu le manaritien	
5) Nier la proposition	
$\forall \ell \in]-\infty;4],$	$\exists \varepsilon > 0, \exists n \in \mathbb{N}, \left(n \geqslant 10 \text{et} \cos(n) - \ell > \frac{\varepsilon}{2}\right).$
6) Soient x et y deux réels tels	que $x < y < 0$. Sous quelles hypothèses sur $n \in \mathbb{Z}^*$ a-t-on $x^n < y^n$?
-	

7)	Corriger	la	grave	erreur	de	rédaction	dans	la	phrase
• ,	Corrigci	ıa	grave	Circui	uc	rcuaction	uans	ıa	piniasc

Notons P(n) la proposition « Pour tout $n \in \mathbb{N}$, $S_n = \frac{n(n+1)}{2}$. » Écrire le début de la rédaction de l'étape d'hérédité dans la démonstration par récurrence d'une propriété ${\cal P}$ portant un entier naturel (initialisée à $n_0 = 0$). **8)** Qu'est-ce que l'ensemble des réels x vérifiant $|x|<\sqrt{5}$? 9) Écrire la rédaction type de la démonstration de $(non(\mathcal{B})\Rightarrow\mathcal{D})$ par contraposée. **10)** Soient s, t et u des réels tels que s>0 et $t^2-4su>0$. Pour quelles valeurs du réel x a-t-on $sx^2+tx+u<0$? Lycée Carnot - H1B Matthias Gorny

Interrogation écrite nº 1 jeudi 21 septembre 2023

NOM:	PRÉNOM :	
Dans tout l'énoncé, ${\cal B}$ et ${\cal C}$ désign	nent des propositions.	
1) Exprimer, à l'aide d'une valeur	absolue, le fait que $x\in \left]-\infty;-\pi\right]\cup\left[\pi;+\infty\right[$:	
2) Écrire le début de la rédaction portant sur les entiers naturels (in	n de l'étape d'hérédité dans la démonstration par nitialisée à $n_0=2$).	récurrence d'une propriété P
3) Soient a , b et c des réels tels qu	ue $b>0$ et $c^2-4ab>0$. Pour quelles valeurs du ré	$\text{ feel } x \text{ a-t-on } bx^2 + cx + a \leqslant 0?$
4) Écrire la rédaction type de la	démonstration de $(\mathrm{non}(\mathcal{C})\Rightarrow\mathcal{B})$ par l'absurde.	
5) Pour exprimer que $(\mathcal{B} \Rightarrow \mathcal{C})$, o	on peut dire (barrer les phrases incorrectes) :	
$ullet$ ${\cal B}$ est une condition suffisar		
$ullet$ Si ${\cal B}$ est fausse, alors ${ m non}({\cal C})$?) est vraie.	
$ullet$ Pour que ${\cal B}$ soit vraie, il su	·	
• Pour que $\mathcal C$ soit fausse, il fa	aut que ${\cal B}$ soit fausse.	
6) Soient x et y deux réels tels q	jue $x < y < 0$. Sous quelles hypothèses sur $n \in \mathbb{Z}$	* a-t-on $x^n < y^n$?

7) Soit a	x un réel. Éci	rire la négation de	$(x^2 \notin \mathbb{Q} \text{ et } x)$	$\in \mathbb{Q})$ à l'a	ide d'une imp	lication.	
8) Donn	er la définitio	on de la partie entiè	ère d'un réel a	x (sans dé	monstration).		
		e non vide et major accompagner d'un d		oncer (san	s démonstrat	ion) la caractér	isation de la born
10) Nier	· la propositio	on					
	$\exists \varepsilon > 0,$	$\forall a \in [-2; 5[,$	$\Big(a \leqslant \varepsilon$	\Longrightarrow	$\Big(\forall x \leqslant a,$	$\exp(x) \leqslant \exp(x)$	$\mathrm{p}(arepsilon)\Big)\Big).$
11) Soit	$n \in \mathbb{N} \backslash \{0, 1\}$	}. Donner la définit	tion de la rac	ine $n^{\text{ième}}$ d	'un réel positi	f x.	