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Abstract

We try to design a simple model exhibiting self-organized criticality, which
is amenable to a rigorous mathematical analysis. To this end, we modify
the generalized Ising Curie-Weiss model by implementing an automatic
control of the inverse temperature. For a class of symmetric distributions
whose density satisfies some integrability conditions, we prove that the
sum Sn of the random variables behaves as in the typical critical gene-
ralized Ising Curie-Weiss model. The fluctuations are of order n3/4 and
the limiting law is C exp(−λx4) dx where C and λ are suitable positive
constants.
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1 Introduction

In their famous article [4], Per Bak, Chao Tang and Kurt Wiesenfeld showed
that certain complex systems are naturally attracted by critical points, without
any external intervention. The amplification of small internal fluctuations can
lead to a critical state and cause a chain reaction leading to a radical change of
the system behavior. These systems exhibit the phenomenon of self-organized
criticality (SOC). Although there is no universal SOC theory, it can be well
understood with the archetype of SOC : the sandpile model, first introduced
in [5]. We consider a pile of sand and the constant drop of new sand grains,
which randomly slide down the slope of sand. We observe local avalanches with
different and unpredictable sizes which are not proportional to the input. Such
phenomenon can be observed in nature (e.g., forest fires, earthquakes, species
evolution).

In general SOC can be observed empirically or simulated on a computer in
various models. However the mathematical analysis of these models turns out to
be extremely difficult, even for the sandpile model whose definition is yet simple.
Self-organized criticality has been reviewed in recent works [2,3,11,19,23]. Other
challenging models are the models for forest fires [20], which are built with the
help of percolation process. Some simple models of evolutions also lead to critical
behaviours [9].

Our goal here is to design a model exhibiting self-organized criticality, which
is as simple as possible, and which is amenable to a rigorous mathematical
analysis. The simplest models exhibiting SOC are obtained by forcing standard
critical transitions into a self-organized state (see section 15.4.2 of [22]). The
idea is to start with a model presenting a phase transition and to create a
feedback from the configuration to the control parameters in order to converge
towards a critical point. The most widely studied model in statistical mechanics,
which exhibits a phase transition and presents critical states, is the Ising model.
Its mean field version is called the Ising Curie-Weiss model (see sections IV.4
and V.9 of [13]). It has been extended to real-valued spins by Richard S. Ellis
and Charles M. Newman [14], in the so called generalized Ising Curie-Weiss
model. This model is our starting point and we will modify it in order to build a
system of interacting random variables, which exhibits a phenomenon of SOC.

Let us first recall the definition and some results on the generalized Ising Curie-
Weiss model. Let ρ be a symmetric probability measure on R with positive
variance σ2 and such that

∀t ≥ 0

Z
R

exp(tx2) dρ(x) <∞.

The generalized Ising Curie-Weiss model associated to ρ and the inverse tem-
perature β > 0 is defined through an infinite triangular array of real-valued
random variables (Xk

n)1≤k≤n such that, for all n ≥ 1, (X1
n, . . . , X

n
n ) has the

distribution

dµn,ρ,β(x1, . . . , xn) =
1

Zn(β)
exp

�
β

2

(x1 + · · ·+ xn)2

n

� nY
i=1

dρ(xi),

where Zn(β) is a normalization. For any n ≥ 1, we set Sn = X1
n + · · · + Xn

n .
When ρ = (δ−1 + δ1)/2, we recover the classical Ising Curie-Weiss model.
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We denote by L the Log-Laplace of ρ (see appendix A). Richard S. Ellis and
Theodor Eisele have shown in [12] that, if L(3)(t) ≤ 0 for any t ≥ 0, then
there exists a map m which is null on ]0, 1/σ2], real analytic and positive on
]1/σ2,+∞[, and such that

Sn
n

L−→
n→∞

§
δ0 if β ≤ 1/σ2

1
2 (δ−m(β) + δm(β)) if β > 1/σ2.

The point 1/σ2 is a critical value and the function m cannot be extended ana-
lytically around 1/σ2. The main result of [14] states that, if β < 1/σ2, then,
under µn,ρ,β ,

Sn√
n

L−→
n→∞

N
�

0,
σ2

1− βσ2

�
.

If β = 1/σ2, then there exists k ∈ N\{0, 1} and λ > 0 such that, under µn,ρ,β ,

Sn
n1−1/2k

L−→
n→∞

Ck,λ exp

�
−λ s2k

(2k)!

�
ds,

where Ck,λ is a normalization. This is a consequence of theorem 2.1 of [14] and
some properties of m explained in [12] implying that s 7−→ L(s

√
β)− s2/2 has

a unique maximum at 0 whenever β ≤ 1/σ2 (see section V.2 of [16] for the
details).

We will transform the previous probability distribution in order to obtain a
model which presents a phenomenon of self-organized criticality, i.e., a model
which evolves towards the critical state β = 1/σ2 of the previous model. More
precisely, the critical generalized Ising Curie-Weiss model is the model where
(X1

n, . . . , X
n
n ) has the distribution

1

Zn
exp

�
(x1 + · · ·+ xn)2

2nσ2

� nY
i=1

dρ(xi).

We wish to build a model which converges to a critical state for every distri-
bution ρ and which does not rely on any specific a priori information on ρ. We
search an automatic control of the inverse temperature β, which would be a
function of the random variables in the model, so that, when n goes to +∞, β
converges towards the critical value of the model. We start with the following
observation: if (Yn)n≥1 is a sequence of independent random variables with iden-
tical distribution ρ, then, by the law of large numbers,

Y 2
1 + · · ·+ Y 2

n

n
−→
n→∞

σ2 a.s.

This convergence provides us with an estimator of 1/σ2. If we believe that a
similar convergence holds in the generalized Ising Curie-Weiss model, then we
are tempted to « replace β by n (x2

1 + · · ·+ x2
n)−1 » in the distribution

1

Zn
exp

�
β

2

(x1 + · · ·+ xn)2

n

� nY
i=1

dρ(xi).

Hence the model we consider in this paper is given by the distribution

1

Zn
exp

�
1

2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

� nY
i=1

dρ(xi).
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The previous considerations suggest that this model should evolve spontaneously
towards a critical state. We will prove rigorously that our model indeed exhibits
a phenomenon of self-organized criticality. However our model is a toy model
which is certainly much less complex than other famous fundamental models of
SOC like the sandpile model.

Our main result (theorem 2) states that, if ρ has an even density satisfying
some integrability condition, then, asymptotically, the sum Sn of the random
variables behaves as in the typical critical generalized Ising Curie-Weiss model:
if µ4 denotes the fourth moment of ρ, then

µ
1/4
4 Sn
σ2n3/4

L−→
n→∞

�
4

3

�1/4

Γ

�
1

4

�−1

exp

�
− s

4

12

�
ds.

This fluctuation result shows that our model is a self-organized model exhibiting
critical behaviour. Indeed it has the same behaviour than the critical generalized
Ising Curie-Weiss model and, by construction, it does not depend on any external
parameter. In this sense, we can conclude that this is a Curie-Weiss model of
self-organized criticality.

Our result presents an unexpected universal feature. For any distribution ρ,
which has an even density satisfying some integrability hypothesis, the fluctua-
tions of Sn are of order n3/4. This is in contrast to the situation in the critical
generalized Ising Curie-Weiss model: at the critical point, the fluctuations are
of order n1−1/2k, where k depends on the distribution ρ. We stress also that
our integrability conditions on ρ are weaker than those of [14]. For instance, our
result holds for any centered Gaussian measure on R. The Gaussian case of our
model can be handled with the help of an explicit computation [17].

The main new technical ingredient of the proof is the following inequality. Let Z
be a random variable with distribution ρ, and let I denote the Cramér transform
of (Z,Z2), given by

∀(x, y) ∈ R2 I(x, y) = sup
(u,v)∈R2

§
xu+ yv − ln

Z
R
euz+vz

2

dρ(z)

ª
.

If ρ is symmetric and there exists v > 0 such that E(exp(vZ2)) < +∞, then

∀(x, y) ∈ R2 I(x, y) ≥ x2

2y
,

and the equality holds only at (0, σ2). We explain in the heuristics at the end
of section 3 why this inequality is crucial to the proof of our main results.

In section 2 we define properly our model. We state our main results and the
strategy for proving them in section 3. Next we split the proofs in the remaining
sections (4-7). In appendix, we recall some generalities on the Cramér transform
and large deviations.

Acknowledgements. We thank two anonymous Referees for their comments
which helped to improve the presentation of the paper.
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2 The model

Let ρ be a probability measure on R, which is not the Dirac mass at 0. We
consider an infinite triangular array of real-valued random variables (Xk

n)1≤k≤n
such that for all n ≥ 1, (X1

n, . . . , X
n
n ) has the distribution eµn,ρ, where

deµn,ρ(x1, . . . , xn) =
1

Zn
exp

�
1

2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

�
1{x2

1+···+x2
n>0}

nY
i=1

dρ(xi),

with

Zn =

Z
Rn

exp

�
1

2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

�
1{x2

1+···+x2
n>0}

nY
i=1

dρ(xi).

We define Sn = X1
n + · · ·+Xn

n and Tn = (X1
n)2 + · · ·+ (Xn

n )2.

The indicator function in the density of the distribution eµn,ρ helps to avoid
any problem of definition if ρ({0}) is positive, since, if ρ({0}) > 0, the event
{x2

1 + · · ·+ x2
n = 0} may occur with positive probability. We notice that, unlike

the generalized Ising Curie-Weiss model, our model is defined for any probability
measure. Indeed x 7−→ x2 is a convex function, therefore

∀(x1, . . . , xn) ∈ Rn
 

nX
i=1

xi

!2

= n2

 
nX
i=1

xi
n

!2

≤ n
nX
i=1

x2
i .

Thus for any n ≥ 1, 1 ≤ Zn ≤ en/2 < +∞.

If we choose ρ = (δ−1 + δ1)/2, we obtain the classical Ising Curie-Weiss model
at the critical value.

3 Convergence theorems

We state here our main results.

By the classical law of large numbers, if ρ is centered and has variance σ2, then,
under ρ⊗n, (Sn/n, Tn/n) converges in probability towards (0, σ2). The next
theorem shows that, under the law eµn,ρ, given certain conditions, (Sn/n, Tn/n)
also converges in probability to (0, σ2).

Theorem 1. Let ρ be a symmetric probability measure on R with positive va-
riance σ2 and such that

∃v0 > 0

Z
R
ev0z

2

dρ(z) < +∞.

We suppose that one of the following conditions holds:

(a) ρ has a density.

(b) ρ is the sum of a finite number of Dirac masses.

(c) There exists c > 0 such that ρ(]0, c[) = 0.

(d) ρ({0}) < 1/
√
e.

Then, under eµn,ρ, (Sn/n, Tn/n) converges in probability towards (0, σ2).
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By the classical central limit theorem, under ρ⊗n, Sn/
√
n converges in distri-

bution to a normal distribution with mean zero and variance σ2. The following
theorem, shows that, given certain conditions, under eµn,ρ, Sn/n3/4 converges
towards a specific distribution.

Theorem 2. Let ρ be a probability measure on R with a density f satisfying:

(a) f is even.

(b) There exists v0 > 0 such thatZ
R
ev0z

2

f(z) dz < +∞.

(c) There exists p ∈ ]1, 2] such thatZ
R2

fp(x+ y)fp(y)|x|1−p dx dy < +∞.

Let σ2 be the variance of ρ and let µ4 be the fourth moment of ρ. We have

µ
1/4
4 Sn
σ2n3/4

L−→
n→∞

�
4

3

�1/4

Γ

�
1

4

�−1

exp

�
− s

4

12

�
ds.

The convergence can equivalently be rewritten as

Sn
n3/4

L−→
n→∞

�
4µ4

3σ8

�1/4

Γ

�
1

4

�−1

exp
�
− µ4

12σ8
s4
�
ds.

We prove this convergence in section 7.

The following corollary is a version of theorem 2 with an hypothesis which is
weaker but easier to check.

Corollary 3. Let ρ be a probability measure on R with an even and bounded
density f such that

∃ v0 > 0

Z
R
ev0z

2

dρ(z) < +∞.

Let σ2 be the variance of ρ and let µ4 be the fourth moment of ρ. Then

µ
1/4
4 Sn
σ2n3/4

L−→
n→∞

�
4

3

�1/4

Γ

�
1

4

�−1

exp

�
− s

4

12

�
ds.

Proof. We check that the hypothesis of the corollary imply the condition (c) of
theorem 2. We haveZ

R2

f3/2(x+ y)f3/2(y)|x|−1/2 dx dy

=

Z
[−1,1]×R

f3/2(x+ y)f3/2(y)

|x|1/2
dx dy +

Z
[−1,1]c×R

f3/2(x+ y)f3/2(y)

|x|1/2
dx dy

≤ ‖f‖3/2∞
Z

[−1,1]×R

f3/2(y)

|x|1/2
dx dy +

Z
[−1,1]c×R

f3/2(x+ y)f3/2(y) dx dy

≤ ‖f‖3/2∞
�Z

R
|f(x)|3/2 dx

��Z 1

−1

dx

|x|1/2

�
+

�Z
R
|f(x)|3/2 dx

�2

.
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The second inequality is obtained by applying Fubini’s theorem. These terms
are finite sinceZ

R
|f(x)|3/2 dx ≤ ‖f‖1/2∞

Z
R
f(x) dx = ‖f‖1/2∞ < +∞.

Thus, with p = 3/2 ∈ ]1, 2], the function (x, y) 7−→ fp(x + y)fp(y)|x|1−p is
integrable.

For instance, if ρ has a bounded support and a density which is even and conti-
nuous on it, then the hypothesis of the theorem are fulfilled.

We end this section by computing the law of (Sn/n, Tn/n) under eµn,ρ and ex-
plaining the strategy for proving these results.

We denote by eνn,ρ the law of (Sn/n, Tn/n) under ρ⊗n. We have

∀(x1, . . . , xn) ∈ Rn
(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

= n
((x1 + · · ·+ xn)/n)2

(x2
1 + · · ·+ x2

n)/n
.

Hence, for any bounded measurable function f : R2 −→ R,

Eµ̃n,ρ
�
f

�
Sn
n
,
Tn
n

��
=

1

Zn

Z
R2

f(x, y) exp

�
nx2

2y

�
1{y>0} deνn,ρ(x, y).

By convexity of t 7−→ t2, we have S2
n ≤ nTn for any n ≥ 1. We define

∆ = { (x, y) ∈ R2 : x2 ≤ y } and ∆∗ = ∆\{(0, 0)}.

Thus eνn,ρ (∆c) = 0. Therefore we have the following proposition:

Proposition 4. Under eµn,ρ, the law of (Sn/n, Tn/n) is

exp

�
nx2

2y

�
1∆∗(x, y) deνn,ρ(x, y)Z

∆∗
exp

�
ns2

2t

�
deνn,ρ(s, t) .

We denote by νρ the law of (Z,Z2) where Z is a random variable with distribu-
tion ρ. The Log-Laplace Λ of νρ is the map defined on R2 by

∀(u, v) ∈ R2 Λ(u, v) = ln

Z
R2

eus+vt dνρ(s, t) = ln

Z
R
euz+vz

2

dρ(z),

and the Cramér transform I of νρ is defined on R2 by

∀(x, y) ∈ R2 I(x, y) = sup
(u,v)∈R2

(xu+ yv − Λ(u, v)).

For n ≥ 1, under ρ⊗n, (Sn/n, Tn/n) is the sum of n independent and identically
distributed random variables with distribution νρ. We refer to the appendix B
for some definitions and results on large deviations, especially Cramér’s theorem
(theorem B.4) which states that, if Λ is finite in the neighbourhood of (0, 0), then
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I is a good rate function and (eνn,ρ)n≥1 satisfies the large deviations principle
with speed n, governed by I.

Here is a classical heuristics on large deviations, suggested by a consequence of
Varadhan’s lemma (see theorem II.7.2 of [13]) : as n goes to +∞, the law of
(Sn/n, Tn/n) under eµn,ρ concentrates exponentially fast on the minima on ∆∗

of the function
G = I − F − inf

∆∗
(I − F ),

where F is the map defined by

∀(x, y) ∈ R× R\{0} F (x, y) =
x2

2y
.

If G has a unique minimum at (x0, y0) ∈ ∆∗, then, under eµn,ρ, (Sn/n, Tn/n)
converges in probability to (x0, y0). Moreover, the large deviations principle
suggests that, for n large enough, eνn,ρ can roughly be approximated by the
distribution Cn exp(−nI(x, y)) dx dy where Cn is a normalizing constant. Thus,
for each bounded continuous function h and α, β > 0,

Eµ̃n
�
h

�
Sn − nx0

n1−α

��
≈

Z
∆∗
h((x− x0)nα) exp (−nG(x, y)) dx dyZ

∆∗
exp (−nG(x, y)) dx dy

≈

Z
∆∗
h(x) exp

�
−nG

�
xn−α + x0, yn

−β + y0

��
dx dyZ

∆∗
exp

�
−nG

�
xn−α + x0, yn

−β + y0

��
dx dy

.

We use then Laplace’s method. The key point is the study of the function G in
the neighbourhood of its minimum (x0, y0). We find four positive values A, B,
a ∈ N and b ∈ N such that, uniformly on a neighbourhood of (x0, y0),

−nG
�
xn−1/a + x0, yn

−1/b + y0

�
−→
n→∞

−Axa −Byb.

We prove that I−F has a unique minimum at (0, σ2) on ∆∗ in section 4. Next we
give the proof of theorem 1 in section 5, with the help of a variant of Varadhan’s
lemma. Finally we compute the expansion of I−F around (0, σ2) in section 6 and
we prove theorem 2 with Laplace’s method in section 7. Throughout these proofs
we use some general results on the Cramér transform, stated in appendix A.

4 Minimum of I − F on ∆∗

Let ρ be a symmetric probability measure on R. In this section, we will use
proposition A.4 in appendix to show an inequality between I and F .

We denote by νρ the distribution of (Z,Z2) when Z is a random variable with law
ρ. If the support of ρ contains at least three points then νρ is a non-degenerate
measure on R2 (see the first paragraphs of appendix A). We denote by C the
convex hull of the set { (x, x2) : x is in the support of ρ }. The function

Λ : (u, v) ∈ R2 7−→ ln

Z
R
euz+vz

2

dρ(z)
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is the Log-Laplace of νρ and its domain of definition DΛ contains R×]−∞, 0[,
thus its interior is non-empty. Let I be the Cramér transform of νρ. We denote
by DI its domain of definition and by AI = ∇Λ(D

o

Λ) its admissible domain (see
definition A.3 in appendix).

Using Jensen’s inequality, we get that I(0, σ2) = 0. Moreover the infimum of
I − F on ∆∗ belongs to [−1/2, 0]. The function I is even in the first variable.
Indeed, if (x, y) ∈ R2, then

I(−x, y) = sup
(u,v)∈R2

�
−xu+ yv − ln

Z
R
euz+vz

2

dρ(z)

�
= sup

(u,v)∈R2

�
xu+ yv − ln

Z
R
e−uz+vz

2

dρ(z)

�
= I(x, y).

Assume that I−F has a unique minimum (x0, y0) on ∆∗. Then (−x0, y0) is also
a minimum of I − F . The uniqueness of the minimum implies that x0 = 0 so
that I − F is non-negative on ∆∗. Finally, since I(0, σ2) = 0, we have y0 = σ2.

Consider first the case of a Bernoulli distribution for which νρ is degenerate. Let
c > 0. Suppose that ρ = (δ−c + δc)/2. The law ρ is centered and its variance is
c2. We can compute Λ and I explicitly :

∀(u, v) ∈ R2 Λ(u, v) = vc2 + ln cosh(uc).

For any (x, y) /∈ [−c, c]× {c2}, I(x, y) = +∞ and

∀x ∈ ]− c, c[ I(x, c2) =
1

2c
((c+ x) ln(c+ x) + (c− x) ln(c− x))− ln c.

The study of the function x 7−→ I(x, c2) − x2/(2c2) shows that, in the Ber-
noulli case, I −F has a unique minimum at (0, σ2). More generally we have the
following lemma:

Lemma 5. Let c > 0. We define

φc : x ∈ R 7−→ sup
u∈R

(ux− ln cosh(uc) ).

The function x 7−→ φc(x)−x2/(2c2) is increasing on [0, c], decreasing on [−c, 0]
and null in 0.

Notice that the Bernoulli case is special since, if X is a random variable with
distribution ρ = (δ−c + δc)/2, then X2 = c2 almost surely. Thus

1

Zn
exp

�
1

2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

�
1{x2

1+···+x2
n>0}

nY
i=1

dρ(xi)

=
1

Zn
exp

�
(x1 + · · ·+ xn)2

2nc2

� nY
i=1

dρ(xi).

This is exactly the classical Curie-Weiss model at the critical point.

In the following, we suppose that the support of νρ contains at least three distinct
points. We first show that, if DΛ is an open subset of R2, then I−F has a unique
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minimum at (0, σ2). To this end, we use proposition A.4 in appendix which states
that I is differentiable on AI = D

o

I = C
o
. Moreover, if (x, y) 7−→ (u(x, y), v(x, y))

is the inverse function of ∇Λ, then

∀(x, y) ∈ D
o

I
∂I

∂x
(x, y) = u(x, y).

If we show that u(x, y) > x/y for x, y > 0, then, by integrating this inequality,

∀(x, y) ∈ D
o

I 0 ≤ ε < x =⇒ I(x, y)− x2

2y
> I(ε, y)− ε2

2y
.

To obtain that I − F has a unique minimum at (0, σ2), it is enough to extend
this inequality to the boundary points of DI (if they exist). We conclude by
using the fact that I is even in its first variable.

The following lemma is the key result to establish the uniqueness of the minimum
of I − F , when ρ is symmetric.

Lemma 6. Let ρ be a symmetric probability measure whose support contains at
least three points. For (x, y) ∈ AI , we have u(x, y) = 0 if x = 0 and

u(x, y) >
x

y
if x > 0,

u(x, y) <
x

y
if x < 0.

Proof. The vector (u, v) = (u(x, y), v(x, y)) verifies

(x, y) = ∇Λ(u, v) =

�Z
R
zeuz+vz

2

dρ(z)Z
R
euz+vz

2

dρ(z)
,

Z
R
z2euz+vz

2

dρ(z)Z
R
euz+vz

2

dρ(z)

�
.

The distribution ρ is symmetric, thusZ
R
zeuz+vz

2

dρ(z) =

Z +∞

0
2zsinh(uz)evz

2

dρ(z).

This formula shows that u and x have the same sign. Moreover for any z ≥ 0,
tanh(z) ≤ z thus, if x > 0 then sinh(uz) ≤ uzcosh(uz). The equality holds if
and only if uz = 0. Therefore, using the symmetry of ρ,

x < u

Z +∞

0
2z2cosh(uz)evz

2

dρ(z)Z
R
euz+vz

2

dρ(z)
= u

Z
R
z2euz+vz

2

dρ(z)Z
R
euz+vz

2

dρ(z)
= uy.

Since x > 0, u > 0 and y > 0, we conclude that u > x/y. Similarly, we show
that if x < 0 then u < x/y.

We can now prove the following inequality:
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Proposition 7. If ρ is a symmetric probability measure on R with variance
σ2 > 0 and such that DΛ is an open subset of R2 then

∀(x, ε, y) ∈ R× R× R\{0} 0 ≤ ε < x =⇒ I(x, y)− x2

2y
≥ I(ε, y)− ε2

2y
.

This inequality is strict if (ε, y) ∈ D
o

I .

The inequality is also true for x < ε ≤ 0 since I is even in its first variable. In co-
rollary 12, we shall extend the inequality to any symmetric distribution on R.

Proof. We have already treated the Bernoulli case. We assume next that the
support of ρ contains at least three points. The Cramér transform I is C∞ on
D
o

I and

∀(x, y) ∈ D
o

I
∂I

∂x
(x, y) = u(x, y).

Let us examine the structure of the set DI . We put

∀y > 0 DI,y = {x ∈ R : (x, y) ∈ DI }.

Let y > 0 be such that (x, y) ∈ D
o

I for some x ∈ R. The set DI,y is a convex
subset of R. Moreover x 7−→ I(x, y) is even, therefore D

o

I,y (the interior of DI,y

as a subset of R) is an open interval ]−a(y), a(y)[ with a(y) ∈ [0,
√
y]. Lemma 6

implies that u(t, y) > t/y for any t ∈ ]0, a(y)[. Thus, for any x ∈ D
o

I,y ∩ ]0,+∞[,

∀ε ∈ [0, x[ I(x, y)− I(ε, y) =

Z x

ε
u(t, y) dt >

Z x

ε

t

y
dt =

x2

2y
− ε2

2y
.

There is no problem of definition at y = 0 since D
o

I ⊂ ∆∗ does not contain
R× {0} and D

o

I,0 = ∅. Moreover

x 7−→ I(x, y)− I(ε, y)

x− ε

is non-decreasing on DI,y\{ε} since I is convex. Therefore, if −a(y) and a(y)
belong to DI,y, then the previous inequality extends to x = −a(y) and x = a(y).

0
×

y = x2

∆

D
o

I = C
o

DI,y

y
×

Case where ρ is symmetric discrete and charges 5 points

11



We have shown that

∀(x, y) ∈ DI y > 0, 0 ≤ ε < x =⇒ I(x, y)− I(ε, y) >
x2

2y
− ε2

2y
,

except for the points (x, y) of the superior and inferior borders of DI , if they
exist. More precisely, we set

K2 = inf {x2 : x is in the support of ρ} ≥ 0

and
L2 = sup {x2 : x is in the support of ρ} ≤ +∞.

If K = 0 and L = +∞ then the inequality is already proved on DI\{(0, 0)}.
Suppose that K2 > 0. Let y = K2 and x ∈ R. We define

f : (u, v) ∈ R2 7−→ ux+ vK2 − Λ(u, v).

Denoting cK = ρ({K}), we have for all (u, v) ∈ R2,

f(u, v) = ux− ln(2cKcosh(uK))− ln

Z
R\[−K,K]

euz+v(z2−K2) dρ(z).

For any z ∈ R\]−K,K[, the function v 7−→ exp(v(z2 −K2)) is non-decreasing.
Therefore

sup
v∈R

f(u, v) = ux− ln(2cKcosh(uK))− ln

�
lim

v→−∞

Z
R\[−K,K]

euz+v(z2−K2) dρ(z)

�
= ux− ln(2cKcosh(uK)),

by the dominated convergence theorem. Indeed

∀z ∈ R\[−K,K] ∀v < −1
���euz+v(z2−K2)

��� ≤ euz−(z2−K2)

and the map z ∈ R\[−K,K] 7−→ euz−(z2−K2) is integrable with respect to ρ
since it is bounded (it is continuous and goes to 0 when |z| goes to +∞). Hence

I(x,K2) = sup
u,v∈R

f(u, v) = sup
u∈R
{ux− ln(2cKcosh(uK)) } .

In fact, we come back to the Bernoulli case. The reason is that, if we condition
on Tn = K2 in our model, then for any i, Xi

n = −K or K.

If cK = 0 then for any x 6= 0, I(x,K2) = +∞ so that the (large) inequality is
verified for y = K2. If cK > 0, then lemma 5 implies that, for all (x, y) ∈ R2,

0 ≤ ε < x ≤ K =⇒ I(x,K2)− I(ε,K2) = φK(x)− φK(ε) >
x2

2K2
− ε2

2K2
.

If L < +∞ then we show similarly the inequality for y = L2. Therefore

∀(x, y) ∈ DI\{(0, 0)} 0 ≤ ε < x =⇒ I(x, y)− x2

2y
≥ I(ε, y)− ε2

2y

and this inequality is strict if (ε, y) ∈ D
o

I . Finally we notice that for any y ∈ R,
by the convexity and the symmetry of x 7−→ I(x, y), if I(ε, y) = +∞ then for

12



all x > ε, I(x, y) = +∞. Therefore the inequality extends to each subset of R2

which does not contain R× {0}.

From the arguments in the previous proof, we notice that if we take x = y = 0,
then for any u ∈ R, the function v 7−→ Λ(u, v) is non-decreasing on R. Therefore

inf
v∈R

Λ(u, v) = lim
v→−∞

Λ(u, v) = lim
v→−∞

�
ln ρ({0}) + ln

Z
R\{0}

euz+vz
2

dρ(z)

�
.

By the dominated convergence theorem, the last integral is equal to ln ρ({0}).
Hence

inf
u,v∈R2

Λ(u, v) = inf
u∈R

(ln ρ({0})) = ln ρ({0}).

This is valid for any probability measure ρ on R. This yields the following lemma:

Lemma 8. If ρ is a probability measure on R then I(0, 0) = − ln ρ({0}).

A consequence of proposition 7 and the fact that I is even in its first variable
is that, if DΛ is an open subset of R2, then the function I − F has a unique
minimum on ∆∗ at (0, σ2). Now we will extend this result to any symmetric
probability measure such that (0, 0) ∈ D

o

Λ. For this we need Mosco’s theorem,
which we restate next.

Definition 9. Let f and fn, n ∈ N, be convex functions from Rd to [−∞,+∞].
The sequence (fn)n∈N is said to Mosco converge to f if for any x ∈ Rd,
? for each sequence (xn)n∈N in Rd converging to x,

liminf
n→+∞

fn(xn) ≥ f(x),

? there exists a sequence (xn)n∈N in Rd converging to x and such that

limsup
n→+∞

fn(xn) ≤ f(x).

If f is a convex function from Rd to [−∞,+∞], we denote by f∗ its Fenchel-
Legendre transform f∗. We have the following theorem (see [18] for a proof):

Theorem 10 (Mosco). Let f and fn, n ∈ N, be functions from Rd to [−∞,+∞]
which are convex and lower semi-continuous. Then (fn)n∈N Mosco converges to
f if and only if (f∗n)n∈N Mosco converges to f∗.

Proposition 11. Let ν be a probability measure on Rd. We denote by L its
Log-Laplace. Let (Kn)n∈N be a non-decreasing sequence of compact sets whose
union is Rd. For all n ∈ N, we set νn = ν(.|Kn) the probability ν conditioned by
Kn and we denote by Ln its Log-Laplace. Then (Ln)n∈N Mosco converges to L.

Proof. For n large enough, the compact set Kn meets the support of ν. Thus,
for n large enough and λ ∈ Rd, we have

Ln(λ) = ln

Z
Rd
e〈λ,z〉 dνn(z) = ln

Z
Kn

e〈λ,z〉 dν(z)− ln ν(Kn).

By the monotone convergence theorem,

lim
n→+∞

Ln(λ) = ln

Z
Rd

lim
n→+∞

�
1Kn(z)e〈λ,z〉

�
dν(z)− lim

n→+∞
ln ν(Kn) = L(λ).

13



Hence the second condition of Mosco convergence (with the limsup) is satisfied
with the sequence (λn)n∈N constant equal to λ.

Let λ ∈ Rd and (λn)n∈N be any sequence converging to λ. Fatou’s lemma implies
that

expL(λ) =

Z
Rd

liminf
n→+∞

1Kn(z)e〈λn,z〉 dν(z) ≤ liminf
n→+∞

Z
Rd
1Kn(z)e〈λn,z〉 dν(z).

Therefore

L(λ) ≤ liminf
n→+∞

(Ln(λn) + ln ν(Kn)) = liminf
n→+∞

Ln(λn).

Thus the first condition of Mosco convergence (with the liminf) is verified and
the proposition is proved.

Corollary 12. If ρ is a symmetric and non-degenerate probability measure on
R then

∀(x, y) ∈ ∆∗ ∀ε ∈ [0, |x|[ I(x, y)− x2

2y
≥ I(ε, y)− ε2

2y
.

Proof. For any n ∈ N, we put Kn = [−n, n]2. For n large enough so that Kn

meets the support of νρ, we define νn = νρ(.|Kn), Λn its Log-Laplace and In its
Fenchel-Legendre transform. For all (u, v) ∈ R2,

Λn(u, v) = ln

Z
Kn

eus+vt dνρ(s, t)− ln νρ(Kn) ≤ Λ(u, v)− ln νρ(Kn).

Applying the Fenchel-Legendre transformation, we get

∀(ε, y) ∈ R2 I(ε, y) ≤ In(ε, y)− ln νρ(Kn).

Moreover the measure νn has a bounded support thus proposition 7 and the
previous inequality imply that, for any (x, ε, y) ∈ R× R×]0,+∞[,

0 ≤ ε < x =⇒ I(ε, y)− ε2

2y
+
x2

2y
≤ In(x, y)− ln νρ(Kn).

It follows from proposition 11 that (Λn)n∈N Mosco converges to Λ. Hence, by
Mosco’s theorem, (In)n∈N Mosco converges to I. In particular, for (x, y) ∈ R2

such that y > 0 and x > ε, there exists a sequence (xn, yn) ∈ R2 converging to
(x, y) and such that

limsup
n→+∞

In(xn, yn) ≤ I(x, y).

Since y > 0 and x > ε, there exists n0 ≥ 1 such that yn > 0 and xn > ε for all
n ≥ n0. Therefore

∀n ≥ n0 I(ε, yn)− ε2

2yn
+

x2
n

2yn
≤ In(xn, yn)− ln νρ(Kn).

Moreover νρ(Kn)→ 1 when n→∞. Hence

limsup
n→+∞

I(ε, yn)− ε2

2y
+
x2

2y
≤ I(x, y).

14



Finally I is lower semi-continuous, thus

liminf
n→+∞

I(ε, yn) ≥ I(ε, y).

This implies the announced inequality.

We can now show that I − F has a unique minimum on ∆∗ at (0, σ2) :

Proposition 13. If ρ is a symmetric probability measure on R with variance
σ2 > 0 and such that Λ is finite in a neighbourhood of (0, 0) then

(x, y) ∈ ∆∗ 7−→ I(x, y)− x2

2y

has a unique minimum at (0, σ2) where it is equal to 0.

Proof. Corollary 12 implies that

∀(x, y) ∈ ∆∗ I(x, y)− x2

2y
≥ I(0, y).

Therefore I − F is a non-negative function. Since (0, 0) ∈ D
o

Λ , the function
I(0, .) has a unique minimum at σ2 (see theorems 25.1 and 27.1 of [21]). As
a consequence, if I − F has a minimum on ∆∗ at (x0, y0), then y0 = σ2 and
I(x0, σ

2) = x2
0/(2σ

2).

Moreover (0, σ2) ∈ AI thus there exists ε > 0 such that Bε, the open ball of
radius ε centered at (0, σ2), is included in AI . If (x, y) realizes a minimum of
I − F on Bε then

(u(x, y), v(x, y)) = ∇I(x, y) = ∇F (x, y) =
�
x/y,−x2/(2y2)

�
.

It follows from lemma 6 that x = 0 and thus u(x, y) = v(x, y) = 0. Therefore
(x, y) = (0, σ2). Hence

∀x ∈ ]− ε, 0[∩ ]0, ε[ I(x, σ2)− x2

2σ2
> 0.

Applying corollary 12 with ε/2, we see that the above inequality holds for any
x 6= 0. It follows that x0 = 0.

5 Proof of theorem 1 with a variant of
Varadhan’s lemma

Let ρ be a symmetric probability measure on R with positive variance σ2 and
such that (0, 0) ∈ D

o

Λ. The heuristics at the end of section 3 and proposition 13
suggest that, as n goes to +∞, the law of (Sn/n, Tn/n) under eµn,ρ concentrates
exponentially fast on (0, σ2), the minimum of I − F .

Yet, in spite of the expression given in proposition 4, we cannot apply Varadhan’s
lemma (theorem II.7.2 of [13]) directly since ∆∗ is not a closed set and F is not
continuous on ∆.

In subsection 5.a), we prove a variant of Varadhan’s lemma. We give the proof
of theorem 1 in subsection 5.b).

15



a) Around Varadhan’s lemma

Proposition 14. Let ρ be a probability measure on R. We denote by eνn,ρ the
distribution of (Sn/n, Tn/n) under ρ⊗n. We have

liminf
n→+∞

1

n
ln

Z
∆∗

exp

�
nx2

2y

�
deνn,ρ(x, y) ≥ 0.

Suppose that ρ is non-degenerate, symmetric and that (0, 0) ∈ D
o

Λ. We assume
that there exists r > 0 such that Mr + ln ρ({0}) < 0 with

Mr = sup

�
x2

2y
: (x, y) ∈ C ∩ Br\{(0, 0)}

�
,

where Br is the open ball of radius r centered at (0, 0) and C is the closed convex
hull of { (x, x2) : x is in the support of ρ }. If A is a closed subset of R2 which
does not contain (0, σ2) then

limsup
n→+∞

1

n
ln

Z
∆∗∩A

exp

�
nx2

2y

�
deνn,ρ(x, y) < 0.

Let us give first some sufficient conditions to fulfill the hypothesis of the pro-
position. To ensure that there exists r > 0 such that Mr + ln ρ({0}) < 0, it is
enough that one of the following conditions is satisfied:

(a) ρ has a density.

(b) ρ({0}) < 1/
√
e.

(c) There exists c > 0 such that ρ(]0, c[) = 0.

(d) ρ is the sum of a finite number of Dirac masses.

Indeed, the function F is bounded by 1/2 on C\{(0, 0)} ⊂ ∆∗, thus for any r > 0,
Mr ≤ 1/2. Therefore, if ρ has a density, or more generally if ρ({0}) < e−1/2,
then for all r > 0, Mr + ln ρ({0}) < 0.

On the other hand, if there exists c > 0 such that ]0, c[ does not intersect the
support of ρ (especially if ρ is the sum of a finite number of Dirac masses) then

C ⊂ { (x, y) ∈ R2 : c|x| ≤ y }.

Therefore

∀(x, y) ∈ C ∩ Br\{(0, 0)} x2

2y
=
c|x|2

2cy
≤ |x|

2c
≤ r

2c
.

Hence for any r > 0, Mr < r/2c. Since ρ is non-degenerate, ρ({0}) < 1, thus
there exists r > 0 such that ln ρ({0}) + r/2c < 0. Therefore the conditions (c)
and (d) imply that Mr + ln ρ({0}) < 0.

Proof of proposition 14. The large deviations principle satisfied by (eνn,ρ)n≥1

implies that

liminf
n→+∞

1

n
ln

Z
∆∗

exp

�
nx2

2y

�
deνn,ρ(x, y)

≥ liminf
n→+∞

1

n
ln eνn,ρ(∆∗) ≥ − inf

n
I(x, y) : (x, y) ∈ ∆

o o
= 0.
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We prove now the second inequality. Let α > 0. The function I is lower semi-
continuous on R2, thus there exists a neighbourhood U of (0, 0) such that

∀(x, y) ∈ U I(x, y) ≥ (I(0, 0)− α) ∧ 1

α
= (− ln ρ({0})− α) ∧ 1

α
.

The above equality follows from lemma 8. By hypothesis, there exists r > 0 such
that Mr + ln ρ({0}) < 0 thus, by choosing α sufficiently small, we can assume
that

Mr + ln ρ({0}) + α < 0 and Mr −
1

α
< 0.

Since Mr decreases with r, we can take r small enough so that Br ⊂ U . Notice
next that (Sn/n, Tn/n) ∈ C almost surely. Therefore, setting C∗ = C\{(0, 0)},Z

∆∗∩A
exp

�
nx2

2y

�
deνn,ρ(x, y) =

Z
C∗∩A

exp

�
nx2

2y

�
deνn,ρ(x, y).

Let us decompose

C∗ ∩A ⊂ (C∗ ∩ Br) ∪ (C ∩ Bcr ∩A).

We have Z
C∗∩Br

exp

�
nx2

2y

�
deνn,ρ(x, y) ≤ exp(nMr) eνn,ρ (U).

The large deviation principle satisfied by (eνn,ρ)n≥1 implies that

limsup
n→+∞

1

n
ln

Z
C∗∩Br

exp

�
nx2

2y

�
deνn,ρ(x, y) ≤Mr − inf

U
I

≤ (Mr + ln ρ({0}) + α) ∨
�
Mr −

1

α

�
.

Next, the set C ∩ Bcr ∩A is closed and does not contain (0, 0) thus the function
F is continuous on this set. Moreover F is bounded on C∗. Hence lemma B.3 in
appendix and lemma 1.2.15 of [10] imply that

limsup
n→+∞

1

n
ln

Z
C∗∩A

exp

�
nx2

2y

�
deνn,ρ(x, y)

≤ max

�
Mr + ln ρ({0}) + α , Mr −

1

α
, sup
C∩Bcr∩A

(F − I)

�
.

Since ρ is symmetric and (0, 0) ∈ D
o

Λ, proposition 13 implies that G = I − F
has a unique minimum at (0, σ2) on ∆∗. Suppose that the infimum of G over
C ∩Bcr ∩A is null. Then there exists a sequence (xk, yk)k∈N in C ∩Bcr ∩A ⊂ ∆∗

such that
lim

k→+∞
G(xk, yk) = inf

C∩Bcr∩A
G = 0.

For k large enough, G(xk, yk) ≤ 1/2 thus I(xk, yk) ≤ 1, i.e., (xk, yk) belongs to
the compact set { (u, v) ∈ R2 : I(u, v) ≤ 1 }. Up to the extraction of a subse-
quence, we suppose that (xk, yk)k∈N converges to some (x0, y0), which belongs
to the closed subset C ∩ Bcr ∩A. Moreover G is lower semi-continuous, hence

0 = liminf
k→+∞

G(xk, yk) ≥ G(x0, y0) ≥ 0.
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Therefore G(x0, y0) = 0 and thus (x0, y0) = (0, σ2) ∈ C ∩ Bcr ∩ A, which is
absurd since A does not contain (0, σ2). Thus the infimum of G over C ∩Bcr ∩A
is positive. Therefore

max

�
Mr + ln ρ({0}) + α , Mr −

1

α
, sup
C∩Bcr∩A

(F − I)

�
< 0.

This proves the second inequality.

b) Proof of theorem 1

Let ρ be a symmetric probability measure on R with positive variance σ2 and
such that

∃v0 > 0

Z
R
ev0z

2

dρ(z) < +∞.

This implies that R×]−∞, v0[⊂ DΛ and thus (0, 0) ∈ D
o

Λ. We assume that one
of the four conditions given in the paragraph below proposition 14 is satisfied.

We denote by θn,ρ the distribution of (Sn/n, Tn/n) under eµn,ρ. Let U be an
open neighbourhood of (0, σ2) in R2. Propositions 4 and 14 imply that

limsup
n→+∞

1

n
ln θn,ρ(U

c) = limsup
n→+∞

1

n
ln

Z
∆∗∩Uc

exp

�
nx2

2y

�
deνn,ρ(x, y)

− liminf
n→+∞

1

n
ln

Z
∆∗

exp

�
nx2

2y

�
deνn,ρ(x, y) < 0.

Hence there exist ε > 0 and n0 ∈ N such that for any n > n0,

θn,ρ(U
c) ≤ e−nε −→

n→∞
0.

Thus, for each open neighbourhood U of (0, σ2),

lim
n→+∞

eµn,ρ ��Sn
n
,
Tn
n

�
∈ U c

�
= 0.

This means that, under eµn,ρ, (Sn/n, Tn/n) converges in probability to (0, σ2).
This ends the proof of theorem 1.
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6 Expansion of I − F around its minimum

In this section, which may be omitted on a first reading, we compute the expan-
sion of the function I − F around (0, σ2), its minimum over ∆∗. These compu-
tations are crucial because they explain why the fluctuations in theorem 2 are
of order n3/4 and they give us the term in the exponential in the limiting law.

If ρ is a symmetric probability measure whose support contains at least three
points and if (0, 0) ∈ D

o

L then (0, σ2) = ∇Λ(0, 0) ∈ ∇Λ(D
o

Λ) = AI , the ad-
missible domain of I. Proposition A.4 in appendix implies that I is C∞ in the
neighbourhood of (0, σ2) and that

∇I(0, σ2) = (u(0, σ2), v(0, σ2)) = (∇Λ)−1(0, σ2) = (0, 0),

D2
(0,σ2)I =

�
D2

(0,0)Λ
�−1

=

�
σ2 0
0 µ4 − σ4

�−1

=

�
1/σ2 0

0 1/(µ4 − σ4)

�
,

since D2
(0,0)Λ is the covariance matrix of νρ. Hence, up to the second order, the

expansion of I − F in the neighbourhood of (0, σ2) is

I(x, y)− F (x, y) =
(y − σ2)2

2(µ4 − σ4)
+ o(‖x, y − σ2‖2).

We need to push further the expansion of I − F .

Consider the case of the Gaussian N (0, σ2). We can compute explicitly I:

∀(x, y) ∈ ∆∗ I(x, y) =
1

2

�
y

σ2
− 1− ln

�
y − x2

σ2

��
.

In the neighbourhood of (0, σ2), we have

I(x, y)− F (x, y) ∼ x4

4σ4
+

(y − σ2)2

4σ2
.

In fact, we have a similar expansion in a more general case:

Proposition 15. If ρ is a symmetric probability measure on R whose support
contains at least three points and such that (0, 0) ∈ D

o

Λ then I is C∞ in the
neighbourhood of (0, σ2). If µ4 denotes the fourth moment of ρ then, when (x, y)
goes to (0, σ2),

I(x, y)− x2

2y
∼ (y − σ2)2

2(µ4 − σ4)
+
µ4x

4

12σ8
.

Proof. If (0, 0) ∈ D
o

Λ then (0, σ2) = ∇Λ(0, 0) ∈ ∇Λ(D
o

Λ) = AI and proposi-
tion A.4 in appendix implies that the function I is C∞ on AI . Moreover, if we
denote the inverse function of ∇Λ by (x, y) 7−→ (u(x, y), v(x, y)), then, for all
(x, y) ∈ AI ,

∇I(x, y) = (u(x, y), v(x, y)) and D2
(x,y)I =

�
D2

(u(x,y),v(x,y))Λ
�−1

.

The hypothesis (0, 0) ∈ D
o

Λ also implies that ρ has finite moments of all order.
The expansion of F to the fourth order in the neighbourhood of (0, σ2) is

F (x, y) =
x2

2σ2
− x2(y − σ2)

2σ4
+
x2(y − σ2)2

2σ6
+ o(‖x, y − σ2‖4).
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Therefore, in the neighbourhood of (0, 0),

I(x, h+σ2)−F (x, h+σ2) =
h2

2(µ4 − σ4)
+a3,0x

3 +a2,1x
2h+a1,2xh

2 +a0,3h
3

+ a4,0x
4 + a3,1x

3h+ a2,2x
2h2 + a1,3xh

3 + a0,4h
4 + o(‖x, h‖4),

with, for any (i, j) ∈ N such that i+ j ∈ {3, 4},

ai,j =
1

i!j!

∂i+jI

∂xi∂yj
(0, σ2),

except for

a2,1 =
1

2

�
∂3I

∂x2∂y
(0, σ2) +

1

σ4

�
and a2,2 =

1

4

∂4I

∂x2∂y2
(0, σ2)− 1

2σ6
.

If we prove that a4,0 > 0 then the terms xh2, h3, x3h, x2h2, xh3 and h4 are
negligible compared to a4,0x

4 + a0,2h
2 when (x, h) goes to (0, 0). Next, the

symmetry of I − F in the first variable implies that a3,0 = 0. If we show that
a2,1 = 0 then, when (x, y)→ (0, σ2),

I(x, y)− F (x, y) =

�
(y − σ2)2

2(µ4 − σ4)
+ a4,0x

4

�
(1 + o(1)).

To conclude it is enough to show that a2,1 = 0 and a4,0 = µ4/(12σ8), that is

∂3I

∂x2∂y
(0, σ2) = − 1

σ4
and

∂4I

∂x4
(0, σ8) =

2µ4

σ2
.

For any j ∈ N, we introduce the function fj defined on D
o

Λ by

∀(u, v) ∈ D
o

Λ fj(u, v) =

Z
R
xjeux+vx2

dρ(x)

�Z
R
eux+vx2

dρ(x)

�−1

.

These functions are C∞ on D
o

Λ and they verify the following properties:
? f0 is the identity function on R2 and

f1 =
∂Λ

∂u
and f2 =

∂Λ

∂v
.

? For all j ∈ N, fj(0, 0) = µj is the j-th moment of ρ. It is null if j is odd, since
ρ is symmetric. Moreover, for any j ∈ N,

∂fj
∂u

= fj+1 − fjf1 and
∂fj
∂v

= fj+2 − fjf2.

Therefore, for all (x, y) ∈ AI ,

D2
(x,y)I =

�
D2

(u(x,y),v(x,y))Λ
�−1

=

�
f2 − f2

1 f3 − f1f2

f3 − f1f2 f4 − f2
2

�−1

(u(x, y), v(x, y)).

Denoting by g = (f2−f2
1 )(f4−f2

2 )−(f3−f1f2)2, the determinant of the positive
definite symmetric matrix D2Λ, we get that for any (x, y) ∈ AI ,

D2
(x,y)I =

1

g(u(x, y), v(x, y))

�
f4 − f2

2 f1f2 − f3

f1f2 − f3 f2 − f2
1

�
(u(x, y), v(x, y)).
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Moreover (u(0, σ2), v(0, σ2)) = (0, 0) thus

∂u

∂x
(0, σ2) =

∂2I

∂x2
(0, σ2) =

f4 − f2
2

g
(0, 0) =

µ4 − σ4

σ2(µ4 − σ4)
=

1

σ2
,

∂v

∂y
(0, σ2) =

∂2I

∂y2
(0, σ2) =

f2 − f2
1

g
(0, 0) =

σ2

σ2(µ4 − σ4)
=

1

µ4 − σ4
,

∂u

∂y
(0, σ2) =

∂v

∂x
(0, σ2) =

∂2I

∂x∂y
(0, σ2) =

f1f2 − f3

g
(0, 0) = 0.

Differentiating with respect to y, we get

∂3I

∂y∂x2
=
∂u

∂y
× ∂

∂u

�
f4 − f2

2

g

�
(u, v) +

∂v

∂y
× ∂

∂v

�
f4 − f2

2

g

�
(u, v).

The first term of the addition, taken at (0, σ2), is null. For the second term, we
need to compute the partial derivative of (f4 − f2

2 )/g with respect to v:

∂

∂v

�
f4 − f2

2

g

�
=

1

g
× ∂

∂v

�
f4 − f2

2

�
− f4 − f2

2

g2
× ∂g

∂v

=
f6 − 3f2f4 + 2f3

2

g
− f4 − f2

2

g2
× ∂g

∂v
.

Let us differentiate with respect to v:

∂g

∂v
= f2(f6−f4f2)+f4(f4−f2

2 )−f2
1 (f6−f4f2)−2f4f1(f3−f1f2)−3f2

2 (f4−f2
2 )

− 2f3(f5 − f3f2) + 2f1f2(f5 − f3f2) + 2f2f3(f3 − f1f2) + 2f1f3(f4 − f2
2 ).

Taken at (0, 0), each term with even subscript vanishes and we have

∂g

∂v
(0, 0) = σ2(µ6 − µ4σ

2) + µ4(µ4 − σ4)− 3σ4(µ4 − σ4)

= σ2µ6 − 3µ4σ
4 + 2σ8 + (µ4 − σ4)2.

Finally

∂

∂v

�
f4 − f2

2

g

�
(0, 0) =

µ6 − 3σ2µ4 + 2σ6

σ2(µ4 − σ4)
− σ2µ6 − 3µ4σ

4 + 2σ8 + (µ4 − σ4)2

σ4(µ4 − σ4)

=
σ4 − µ4

σ4
.

Therefore

∂3I

∂y∂x2
(0, σ2) = 0+

∂v

∂y
(0, σ2)

∂

∂v

�
f4 − f2

2

g

�
(0, 0) =

1

µ4 − σ4
×σ

4 − µ4

σ4
= − 1

σ4
.

This is what we wanted to prove. Let us compute now the fourth partial deri-
vative of I with respect to x. We have to obtain first an expression of the third
partial derivative of I with respect to x:

∂3I

∂x3
=
∂u

∂x
× ∂

∂u

�
f4 − f2

2

g

�
(u, v) +

∂v

∂x
× ∂

∂v

�
f4 − f2

2

g

�
(u, v).
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The only term we do not know is the partial derivative with respect to u of
(f4 − f2

2 )/g. We have

∂

∂u

�
f4 − f2

2

g

�
=

1

g
× ∂

∂u

�
f4 − f2

2

�
− f4 − f2

2

g2
× ∂g

∂u

=
f5 − f4f1 − 2f2f3 + 2f2

2 f1

g
− f4 − f2

2

g2
× ∂g

∂u
,

with

∂g

∂u
= f2(f5 − f4f1) + f4(f3 − f2f1)− f2

1 (f5 − f4f1)− 2f4f1(f2 − f2
1 )

− 3f2
2 (f3 − f2f1)− 2f3(f4 − f3f1) + 2f1f2(f4 − f3f1)

+ 2f2f3(f2 − f2
1 ) + 2f1f3(f3 − f2f1).

Notice that this quantity vanishes at (0, 0). Therefore the partial derivative of
(f4 − f2

2 )/g with respect to u, taken at (0, 0), is null as well and we get back
that the third partial derivative of I with respect to x, taken at (0, σ2), is null.
Differentiating once more, we obtain

∂4I

∂x4
=
∂u

∂x
×
�
∂u

∂x
× ∂2

∂u2

�
f4 − f2

2

g

�
(u, v) +

∂v

∂x
× ∂2

∂v∂u

�
f4 − f2

2

g

�
(u, v)

�
+
∂2u

∂x2
× ∂

∂u

�
f4 − f2

2

g

�
(u, v) +

∂2v

∂x2
× ∂

∂v

�
f4 − f2

2

g

�
(u, v)

+
∂v

∂x
×
�
∂u

∂x
× ∂2

∂u∂v

�
f4 − f2

2

g

�
(u, v) +

∂v

∂x
× ∂2

∂v2

�
f4 − f2

2

g

�
(u, v)

�
.

Let us compute it at (0, σ2):

∂4I

∂x4
(0, σ2) =

1

σ2

�
1

σ2

∂2

∂u2

�
f4 − f2

2

g

�
(0, 0) + 0

�
+ 0 +

σ4 − µ4

σ4

∂2v

∂x2
(0, σ2) + 0,

with
∂2v

∂x2
(0, σ2) =

∂

∂x

�
∂2I

∂x∂y

�
(0, σ2) =

∂3I

∂x2∂y
(0, σ2) = − 1

σ4

and

∂2

∂u2

�
f4 − f2

2

g

�
=

1

g

∂2

∂u2
(f4 − f2

2 )− 2

g2

∂g

∂u

∂

∂u
(f4 − f2

2 )− f4 − f2
2

g2

∂2g

∂u2

+
2

g3

�
∂g

∂u

�2

(f4 − f2
2 ).

Hence

∂2

∂u2

�
f4 − f2

2

g

�
(0, 0) =

1

σ4(µ4 − σ4)

�
σ2 ∂

2

∂u2
(f4 − f2

2 )(0, 0)− ∂2g

∂u2
(0, 0)

�
.

The two remaining terms are the derivatives of quantities which we have already
computed. We evaluate them directly at (0, 0), which is straightforward since
fj(0, 0) = 0 when j is odd:

∂2

∂u2
(f4 − f2

2 )(0, 0) =
∂

∂u
(f5 − f4f1 − 2f2f3 + 2f2

2 f1)(0, 0) = µ6 − 3σ2µ4 + 2σ6
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and

∂2g

∂u2
(0, 0) =

∂

∂u

�
∂g

∂u

�
(0, 0) = σ2(µ6 − µ4σ

2) + µ4(µ4 − σ4)− 0− 2µ4σ
4

− 3σ4(µ4 − σ4)− 2µ2
4 + 2σ4µ4 + 2σ4µ4 + 0.

This is equal to σ2µ6 − µ2
4 + 3σ8 − 3µ4σ

4 after simplification. Thus we have

∂2

∂u2

�
f4 − f2

2

g

�
(0, 0) =

σ2µ6 − 3σ4µ4 + 2σ8 − σ2µ6 + µ2
4 − 3σ8 + 3µ4σ

4

σ4(µ4 − σ4)

=
µ2

4 − σ8

σ4(µ4 − σ4)
=
µ4 + σ4

σ4
.

Finally
∂2I

∂x4
(0, σ2) =

µ4 + σ4

σ8
− σ4 − µ4

σ8
=

2µ4

σ8
.

We obtain the announced term and the proof is completed.

7 Proof of theorem 2

We first give conditions on the probability measure ρ in order to apply theo-
rem A.5 (see appendix A) to the distribution νρ. We will use then Laplace’s
method, as we announced in the heuristics of section 3, to obtain the fluctua-
tions theorem 2. The proof will rely on the expansion of I − F around (0, σ2)
given in proposition 15. We will also use the variant of Varadhan’s lemma, stated
in proposition 14. We start with the following lemma:

Lemma 16. If ρ has a probability density f with respect to the Lebesgue measure
on R, then ν∗2ρ has the density

f2 : (x, y) 7−→ 1p
2y − x2

f

�
x+

p
2y − x2

2

�
f

�
x−

p
2y − x2

2

�
1x2<2y

with respect to the Lebesgue measure on R2.

Proof. Let h be a bounded continuous function from R2 to R. We haveZ
R2

h(x, y) dν∗2ρ (x, y) =

Z
R2

h((z, z2) + (t, t2)) dρ(z) dρ(t)

=

Z
D+

h(z + t, z2 + t2)f(z)f(t) dz dt+

Z
D−

h(z + t, z2 + t2)f(z)f(t) dz dt,

with D+ = { (z, t) ∈ R2 : z > t } and D− = { (z, t) ∈ R2 : z < t }. Indeed,
the Lebesgue measure of the set { (z, t) ∈ R2 : z = t } is null. Let us denote
respectively by I+ and I− the two previous integrals.

We define φ : (z, t) ∈ R2 7−→ (u, v) = (z + t, z2 + t2). It is a one to one map
from D+ (resp. from D−) onto ∆2 = { (u, v) ∈ R2 : u2 < 2v }. Moreover φ is C1

on D+ ∪D− and its Jacobian in (z, t) is 2|z − t| = 2
√

2v − u2 6= 0. The change
of variables given by φ yields

I+ =I−=

Z
∆2

h(u, v)
1

2
√

2v − u2
f

�
u+
√

2v − u2

2

�
f

�
u−
√

2v − u2

2

�
du dv.
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By adding theses two terms, we get the lemma.

By theorem A.5 in appendix, the expansion of gn holds as soon as there exists
q ∈ [1,+∞[ such that Òf2 ∈ Lq(Rd). However the computation of Òf2 is not feasible
in general. Proposition A.6 says that the previous condition is satisfied if there
exists p ∈ ]1, 2] such that f2 ∈ Lp(Rd) so that the expansion is true. Let us take
a look at this:Z

R2

|f2(u, v)|p du dv

=

Z
R2

fp
�
(u+

√
2v − u2)/2

�
fp
�
(u−

√
2v − u2)/2

�
(2v − u2)p/2

1u2<2v du dv.

Let us make the change of variables given by

(u, v) 7−→ (x, y) =
1

2
(u+

p
2v − u2, u+

p
2v − u2),

which is a C1-diffeomorphism from ∆2 to D+ (see the proof of the previous
lemma) with Jacobian in (u, v), 2

√
2v − u2 = 2(y − x) > 0 :Z

R2

|f2(u, v)|p du dv =

Z
R2

fp(x)fp(y)

(y − x)p
2(y − x)1y>x dx dy.

By symmetry in x and y, we getZ
R2

|f2(u, v)|p du dv =

Z
R2

fp(x)fp(y)|y − x|1−p dx dy.

Then we get the following proposition :

Proposition 17. Suppose that ρ has a density f with respect to the Lebesgue
measure on R such that, for some p ∈ ]1, 2],Z

R2

fp(x+ y)fp(y)|x|1−p dx dy < +∞.

Then, for n large enough, eνn,ρ has a density gn with respect to the Lebesgue
measure on R2 such that, for any compact subset KI of AI , when n → +∞,
uniformly over (x, y) ∈ KI .

gn(x, y) ∼ n

2π

�
det D2

(x,y)I
�1/2

e−nI(x,y).

Let us prove now theorem 2. Suppose that ρ is a probability measure on R with
an even density f such that there exist v0 > 0 and p ∈ ]1, 2] such thatZ

R
ev0z

2

f(z) dz < +∞ and

Z
R2

fp(x+ y)fp(y)|x|1−p dx dy < +∞.

The first inequality implies that R×] − ∞, v0[⊂ DΛ and thus (0, 0) ∈ D
o

Λ.
Moreover ρ is symmetric (since f is even) and its support contains at least three
points (since ρ has a density). Proposition 15 implies that there exists δ > 0
such that

∀(x, y) ∈ Bδ G(x, y) = I(x, y)− x2

2y
≥ (y − σ2)2

4(µ4 − σ4)
+
µ4x

4

24σ8
, (∗)
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where µ4 denotes the fourth moment of ρ and Bδ the open ball of radius δ
centered at (0, σ2). We can reduce δ, in order to have Bδ ⊂ KI where KI is a
compact subset of AI . Moreover AI ⊂ D

o

I ⊂ ∆∗ thus Bδ ∩∆∗ = Bδ.

Let n ∈ N and let f : R −→ R be a bounded continuous function. We have

Eµ̃n,ρ
�
f

�
Sn
n3/4

��
=

1

Zn

Z
∆∗
f(xn1/4) exp

�
nx2

2y

�
deνn,ρ(x, y) =

An +Bn
Zn

,

with

An =

Z
Bδ

f(xn1/4) exp

�
nx2

2y

�
deνn,ρ(x, y),

Bn =

Z
∆∗∩Bc

δ

f(xn1/4) exp

�
nx2

2y

�
deνn,ρ(x, y).

Let us introduce e−nI(x,y) in the expression of An, in order to use proposition 17
:

An = n

Z
Bδ

f(xn1/4)e−nG(x,y)Hn(x, y) dx dy,

where we set Hn(x, y) = enI(x,y)gn(x, y)/n. We define

Bδ,n = { (x, y) ∈ R2 : x2/
√
n+ y2/n ≤ δ2 }.

Let us make the change of variables given by (x, y) 7−→ (xn−1/4, yn−1/2 + σ2),
with Jacobian n−3/4:

An = n1/4

Z
Bδ,n

f(x) exp

�
−nG

�
x

n1/4
,
y√
n

+ σ2

��
Hn

�
x

n1/4
,
y√
n

+ σ2

�
dx dy.

We check now that we can apply the dominated convergence theorem to this
integral. The uniform expansion of gn (see proposition 17) means that for any
α > 0, there exists n0 ∈ N such that

(x, y) ∈ KI and n ≥ n0 =⇒
����Hn(x, y) 2π

�
det D2

(x,y)I
�−1/2

− 1

���� ≤ α.
If (x, y) ∈ Bδ,n, then (xn, yn) = (xn−1/4, yn−1/2 + σ2) ∈ Bδ ⊂ KI , thus for all
n ≥ n0 and (x, y) ∈ Bδ,n,����Hn

�
x

n1/4
,
y√
n

+ σ2

�
2π
�
det D2

(xn,yn)I
�−1/2

− 1

���� ≤ α.
Moreover (xn, yn)→ (0, σ2) thus, by continuity,�

D2
(xn,yn)I

�−1/2
−→

n→+∞

�
D2

(0,σ2)I
�−1/2

=
�
D2

(0,0)Λ
�1/2

,

whose determinant is equal to
È
σ2(µ4 − σ4). Therefore

1Bδ,n(x, y)Hn

�
x

n1/4
,
y√
n

+ σ2

�
−→

n→+∞

�
4π2σ2(µ4 − σ4)

�−1/2
.
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The expansion of G in the neighbourhood of (0, σ2) implies that

exp

�
−nG

�
x

n1/4
,
y√
n

+ σ2

��
−→

n→+∞
exp

�
− y2

2(µ4 − σ4)
− µ4x

4

12σ8

�
.

Let us check that the integrand is dominated by an integrable function, which
is independent of n. The function

(x, y) 7−→
�
D2

(x,y)I
�−1/2

is bounded on Bδ by some Mδ > 0. The uniform expansion of gn implies that
for all (x, y) ∈ Bδ, Hn(x, y) ≤ Cδ for some constant Cδ > 0. Finally, the
inequality (∗) above yields that

1Bδ,n(x, y)f(x) exp

�
−nG

�
x

n1/4
,
y√
n

+ σ2

��
Hn

�
x

n1/4
,
y√
n

+ σ2

�
≤ ‖f‖∞Cδ exp

�
− y2

4(µ4 − σ4)
− µ4x

4

24σ8

�
.

The right term is an integrable function on R2, thus it follows from the domi-
nated convergence theorem that

An ∼
+∞

n1/4

Z
R2

f(x)
1

√
2πσ2

È
2π(µ4 − σ4)

exp

�
− y2

2(µ4 − σ4)
− µ4x

4

12σ8

�
dx dy.

By Fubini’s theorem, we get

An ∼
+∞

n1/4

√
2πσ2

Z
R
f(x) exp

�
−µ4x

4

12σ8

�
dx.

Let us focus now on Bn. The distribution ρ is symmetric, it has a density and
(0, 0) belongs to the interior of DΛ, thus proposition 14 implies that there exist
ε > 0 and n0 ≥ 1 such that for any n ≥ n0,Z

∆∗∩Bc
δ

exp

�
nx2

2y

�
deνn,ρ(x, y) ≤ e−nε,

and thus Bn ≤ ‖f‖∞e−nε, so that Bn = o(n1/4). Therefore

An +Bn ∼
+∞

n1/4

√
2πσ2

Z
R
f(x) exp

�
−µ4x

4

12σ8

�
dx.

Applying this to f = 1, we get

Zn ∼
+∞

2n1/4

√
2πσ2

Z +∞

0
exp

�
−µ4x

4

12σ8

�
dx =

n1/4

√
2πσ2

1

2

�
12σ8

µ4

�1/4

Γ

�
1

4

�
,

where we made the change of variables y = µ4x
4/(12σ8). Finally

Eµ̃n,ρ
�
f

�
Sn
n3/4

��
∼

+∞

�
4µ4

3σ8

�1/4

Γ

�
1

4

�−1 Z
R
f(x) exp

�
−µ4x

4

12σ8

�
dx.

The ultimate change of variables s = µ
1/4
4 x/σ2 gives us theorem 2.
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Appendix A
General results on the Cramér transform

This appendix presents some general results on the Cramér transform of a pro-
bability distribution on Rd.

A probability measure R is said to be degenerate if it is a Dirac mass. The
following definition generalizes this notion for measures on Rd:

Definition A.1. A probability measure ν on Rd, d ≥ 2, is said to be degenerate
if its support is included in a hyperplane of Rd, i.e., there exists a hyperplane H
of Rd such that ν(H) = 1.

A first consequence of the non-degeneracy of ν is that its covariance matrix is
a symmetric positive definite matrix (see section III.5 of [15] for a proof).

From now onwards, we consider ν a non-degenerate probability measure on Rd.
The Log-Laplace L of ν is defined in Rd by

∀λ ∈ Rd L(λ) = ln

Z
Rd
e〈λ,z〉 dν(z),

where 〈 , 〉 denotes the inner product in Rd. It is a convex function on Rd which
takes its values in ] −∞,+∞]. The Fenchel-Legendre transform of L is called
the Cramér transform of ν and is defined on Rd by

∀x ∈ Rd J(x) = sup
λ∈Rd

( 〈λ, x〉 − L(λ) ).

It is a non-negative, convex and lower semi-continuous function. We denote by
DL and DJ the convex sets where L and J are finite. Notice that, if D

o

L 6= ∅,
then L is C∞ on D

o

L. We refer to section 2.2 of [10], section VII.5 of [13] and
sections 25 and 26 of [21] for the main results on L and J Cramér’s theorem
(theorem B.4 in appendix) links J and the large deviations of Sn/n where Sn
is the sum of n independent random variables with common distribution ν.

We are interested in the points λ realizing the supremum defining J(x), for
x ∈ DJ . We denote by C the closed convex hull of the support of ν.

Lemma A.2. Let ν be a non-degenerate probability measure on Rd. The interior
of C is not empty and C

o
⊂ DJ ⊂ C. Moreover for any x ∈ C

o
, the supremum

defining J(x) is realized for some value λ(x) ∈ DL.

Proof. The non-degeneracy of ν means that its support is not included in a
hyperplane of Rd. Therefore the support of ν contains d linearly independent
vectors and the interior of the convex hull of these vectors is non-empty. Thus
C
o

is non-empty.

Suppose that C 6= Rd (otherwise it is immediate that DJ ⊂ C). Let x /∈ C. By
the Hahn-Banach theorem, there exists λ ∈ Rd and a ∈ R such that

∀y ∈ C 〈λ, y〉 ≤ a < 〈λ, x〉.

Since ν(C) = 1, Jensen’s inequality implies that

∀t > 0 J(x) ≥ − ln

Z
C

exp(t〈λ, y〉 − t〈λ, x〉) dν(y) ≥ t(〈λ, x〉 − a).
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Sending t to +∞, we conclude that J(x) = +∞. Thus DJ ⊂ C.
Let x ∈ C

o
and let (λn)n∈N be a sequence in Rd such that

J(x) = lim
n→+∞

�
〈λn, x〉 − ln

Z
Rd

exp(〈λn, z〉) dν(z)

�
= − ln lim

n→+∞

Z
Rd

exp(〈λn, z − x〉) dν(z).

We suppose that |λn| → +∞ and we show that it leads to a contradiction. For
all n ∈ N, we set un = λn|λn|−1. Then (un)n∈N is a bounded sequence. Thus, up
to the extraction of a subsequence, we might assume that it converges to some
vector u ∈ Rd whose norm is 1. Let v belong to the support of ν and let U be
an open subset of Rd containing v. We have then ν(U) > 0. Suppose that for
any z ∈ U , 〈u, z − x〉 > 0. Then, by Fatou’s lemma,

+∞ =

Z
U

liminf
n→+∞

exp(|λn|〈un, z − x〉) dν(z)

≤ liminf
n→+∞

Z
U

exp(|λn|〈un, z − x〉) dν(z).

Hence

exp(−J(x)) = lim
n→+∞

Z
Rd

exp(|λn|〈un, z − x〉) dν(z) = +∞.

Thus J(x) = −∞, which is absurd since J is a non-negative function. We
conclude that for all v in the support of ν and for any open subset U of Rd
containing v, there exists z ∈ U such that 〈u, z − x〉 ≤ 0. It follows that, for
any v in the support of ν, 〈u, v〉 ≤ 〈u, x〉. This inequality is stable by convex
combinations, thus

∀y ∈ C 〈u, y〉 ≤ 〈u, x〉.
Since x ∈ C

o
, there exists a ball Bx centered at x and contained in C. Thus there

exists y0 ∈ Bx such that 〈u, y0〉 > 〈u, x〉, which is absurd. Therefore (λn)n∈N is a
bounded sequence. Hence there exists a subsequence (λφ(n))n∈N and λ(x) ∈ Rd
such that λφ(n) → λ(x). By Fatou’s lemma,

J(x) = 〈λ(x), x〉 − ln lim
n→+∞

Z
Rd

exp(〈λn, z〉) dν(z)

≤ 〈λ(x), x〉 − ln

Z
Rd

liminf
n→+∞

exp(〈λn, z〉) dν(z)

= 〈λ(x), x〉 − ln

Z
Rd

exp(〈λ(x), z〉) dν(z) ≤ J(x).

Thus J(x) = 〈λ(x), x〉 − L(λ(x)). Since L(λ(x)) 6= −∞, this formula implies
that J(x) < +∞ and thus that C

o
⊂ DJ . Moreover if L(λ(x)) = +∞ then

J(x) = −∞, which is absurd. Therefore L(λ(x)) < ∞. This shows that the
supremum defining J(x) is realized at a point λ(x) such that Λ(λ(x)) < +∞.

If DL is an open subset of Rd then for all (x, y) ∈ D
o

J = C
o
, the supremum

defining J(x) is realized at some λ(x) ∈ D
o

L. This is the case when the support
of ν is bounded, and also for the distribution νρ when ρ is the GaussianN (0, σ2),
where we have then DL = R× ]−∞, 1/(2σ2)[.

Now we study the smoothness of J .
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Notation. If f is a differentiable function on an open subset U of Rd, we denote
by Dxf the differential of f at x ∈ U . If f is real-valued, we denote:
? D2

xf its second differential at x ∈ U (considered as a matrix of size d× d).
? ∇f the function U −→ Rd such that

∀x ∈ U ∀y ∈ Rd 〈∇f(x), y〉 = Dxf(y).

We define the admissible domain of J :

Definition A.3. Let ν be a non-degenerate probability measure on Rd such
that the interior of DL is non-empty. The admissible domain of J is the set
AJ = ∇L (D

o

L).

The following proposition states that AJ , the admissible domain of J , is an open
subset of Rd, and that J is C∞ on AJ .

Proposition A.4. Let ν be a non-degenerate probability measure on Rd such
that the interior of DL is non-empty. Let AJ be the admissible domain of J .

(a) The function ∇L is a C∞-diffeomorphism from D
o

L to AJ . Moreover

AJ ⊂ DJ = {x ∈ Rd : J(x) < +∞}.

(b) Denote by λ the inverse C∞-diffeomorphism of ∇L. Then the map J is C∞
on AJ and for any x ∈ AJ ,

J(x) = 〈x, λ(x)〉 − L(λ(x)),

∇J(x) = (∇L)−1(x) = λ(x) and D2
xJ =

�
D2
λ(x)L

�−1
.

(c) If DL is an open subset of Rd then AJ = D
o

J = C
o

where C denotes the
convex hull of the support of ν.

Proof. The points (a) and (b) are proved in section 2 of [1], section 1.5 of [7]
and section 26 of [21] (see also section VIII.4 of [13] in the case DL = Rd). Let
us prove the point (c). If DL is an open subset of Rd then lemma A.2 implies
that for x ∈ C

o
= D

o

J , the supremum defining J(x) is realized at some point
λ(x) ∈ DL = D

o

L. The function L is differentiable at λ(x) and the point (b)
yields that

x = ∇L(λ(x)) ∈ Λ(D
o

L) = AJ .

Thus D
o

J ⊂ AJ . Finally, since AJ ⊂ DJ and AJ is open, we have AJ = D
o

J = C
o
.

This proves (c).

Let ν be a probability distribution on Rd having a density with respect to
the Lebesgue measure and let Sn be the sum of n independent and identically
distributed random variables with distribution ν. The following theorem states
that, under some hypothesis allowing the Fourier inversion, the density of the
distribution of Sn/n is asymptotically a function of J , the Cramér transform of
ν. We refer to section 3 of the article of C. Andriani and P. Baldi [1] for a proof.

Theorem A.5. Let ν be a non-degenerate probability measure on Rd. We denote
by L its Log-Laplace and by J its Cramér transform. Suppose that D

o

L 6= ∅ and
that there exists n0 ≥ 1 such thatÔν∗n0 ∈ L1(Rd).
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We denote by AJ the admissible domain of J . Let (Xn)n≥1 be a sequence of
independent and identically distributed random variables with distribution ν.
For any n ≥ n0, the random variable Xn = (X1 + · · · + Xn)/n has a density
gn with respect to the Lebesgue measure on Rd. If KJ is a compact subset of AJ
then, uniformly over x ∈ KJ , when n goes to +∞,

gn(x) ∼
� n

2π

�d/2 �
det D2

xJ
�1/2

e−nJ(x).

Proposition A.6. Let ν be a non-degenerate probability measure on Rd such
that D

o

L 6= ∅. If there exists m ∈ N and p ∈ ]1, 2] such that ν∗m has a density
fm ∈ Lp(Rd) then the hypothesis of theorem A.5 are verified.

Proof. The Hausdorff-Young inequality (see theorem 1.2.1 of [6]) implies thatÒfm ∈ Lr(Rd), with r = p/(p − 1). Moreover Òfm is bounded thus Òfm ∈ Lq(Rd),
where q is a positive integer larger than r. ThereforeÕν∗mq =

�Ôν∗m�q =
�Òfm�q ∈ L1(Rd).

Hence the hypothesis of the theorem are verified with n0 = mq.

Appendix B
Some results on large deviations

Let (X ,B) be a topological space. We refer to the section 1.2 of [10] for the two
following definitions :

Definition B.1. A rate function on X is a non-negative map J defined on X
and which is lower semi-continuous, that is, for any α > 0, the level set

{x ∈ X : J(x) ≤ α }

is a closed subset of X . A good rate function is a rate function for which all
these level sets are compact sets of X .

Definition B.2. A sequence (µn)n≥1 of probability measures on X satisfies a
large deviation principle with speed n and governed by the rate function J if, for
any A ∈ B,

− inf { J(x) : x ∈ A
o
} ≤ liminf

n→+∞

1

n
lnµn(A)

≤ limsup
n→+∞

1

n
lnµn(A) ≤ − inf { J(x) : x ∈ A }.

The following lemma is a variant of the upper bound of Varadhan’s lemma (see
lemma 4.3.6 of [10]).

Lemma B.3. Let X be a regular topological space endowed with its Borel σ-
field B. Let (νn)n≥1 be a sequence of probability measures defined on (X ,B)
which satisfies a large deviation principle with speed n, governed by the good
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rate function J . For any bounded continuous function f : X −→ R, we have for
any closed subset A of X ,

limsup
n→+∞

1

n
ln

Z
A
enf(x) dνn(x) ≤ sup

x∈A
(f(x)− J(x)).

We end this appendix with the Cramér theorem in Rd (see theorem 2.2.30 of [10])
:

Theorem B.4 (Cramér). Let ν be a probability measure on Rd, d ≥ 1. We
denote by L its Log-Laplace and by J its Cramér transform. Let (Xn)n≥1 be a
sequence of independent random variables with common law ν. We define

∀n ≥ 1 Sn = X1 + · · ·+Xn.

If L is finite in the neighbourhood of 0 then J is a good rate function and the
sequence of the laws of Sn/n, n ≥ 1, satisfies the large deviation principle with
speed n and governed by J .
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[8] Raphaël Cerf. On Cramér’s theory in infinite dimensions, volume 23 of
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