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Abstract

We try to design a simple model exhibiting self-organized criticality, which
is amenable to a rigorous mathematical analysis. To this end, we modify
the generalized Ising Curie-Weiss model by implementing an automatic
control of the inverse temperature. With the help of exact computations,
we show that, in the case of a centered Gaussian measure with positive
variance σ2, the sum Sn of the random variables has fluctuations of order
n3/4 and that Sn/n

3/4 converges to the distribution C exp(−x4/(4σ4)) dx
where C is a suitable positive constant.
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1 Introduction

In their famous article [4], Per Bak, Chao Tang and Kurt Wiesenfeld showed
that certain complex systems are naturally attracted by critical points, without
any external intervention. The amplification of small internal fluctuations can
lead to a critical state and cause a chain reaction leading to a radical change of
the system behavior. These systems exhibit the phenomenon of self-organized
criticality (SOC). Although there is no universal SOC theory, it can be well un-
derstood with the archetype of SOC : the sandpile model, first introduced in [4].
We consider a pile of sand and the constant drop of new sand grains, which ran-
domly slide down the slope of sand. We observe local avalanches with different
and unpredictable sizes which are not proportional to the input. Such phenome-
non can be observed in nature (e.g., forest fires, earthquakes, species evolution).
In general SOC can be observed empirically or simulated on a computer in va-
rious models. However the mathematical analysis of these models turns out to
be extremely difficult, even for the sandpile model whose definition is yet simple.
Self-organized criticality have been reviewed in recent works [1,2,7,11,15]. Other
challenging models are the models for forest fires [12], which are built with the
help of percolation process. Some simple models of evolutions also lead to critical
behaviours [6].

Our goal here is to design a model exhibiting SOC, which is as simple as possible,
and which is amenable to a rigorous mathematical analysis. The simplest models
exhibiting self-organized criticality can be obtained by forcing standard critical
transitions into a self-organized state (see [14] section 15.4.2). The idea is to start
with the Ising Curie-Weiss model (see [8]), which presents a phase transition,
and to create a feedback from the configuration to the control parameters in
order to converge towards a critical point.

The generalized Ising Curie-Weiss model (see [9]) associated to a probability
measure ρ on R (with some « sub-Gaussian » conditions) and the inverse tem-
perature β > 0 is defined through an infinite triangular array of real-valued
random variables (Xk

n)1≤k≤n such that, for all n ≥ 1, (X1
n, . . . , X

n
n ) has the

distribution
1

Zn(β)
exp

�
β

2

(x1 + · · ·+ xn)2

n

� nY
i=1

dρ(xi),

where Zn(β) is a normalization. For any n ≥ 1, we set Sn = X1
n + · · ·+Xn

n . Let
σ2 be the variance of ρ. Ellis and Newman [9] have proved the following result.
If β < 1/σ2, then the fluctuations of Sn are of order

√
n and Sn/

√
n converges

towards a specific Gaussian distribution. If β = 1/σ2, then the fluctuations of
Sn are of order n1−1/2k, where k is an integer depending on the distribution ρ.
The point 1/σ2 is the critical value of the generalized Ising Curie-Weiss model.

In order to obtain a model which presents SOC we transform the previous
probability distribution by « replacing β by n (x21 + · · · + x2n)−1 ». Hence the
model we consider is given by the distribution

1

Zn
exp

�
1

2

(x1 + · · ·+ xn)2

x21 + · · ·+ x2n

� nY
i=1

dρ(xi).

We refer to [5] for a more detailed construction. This model can be defined
for any distribution ρ, in particular for any Gaussian measure (contrary to the
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generalized Ising Curie-Weiss model). In this paper, we consider the case where
ρ is the centered Gaussian measure with variance σ2 and we show that Sn/n

3/4

converges to the distribution�
σ√
2

Γ

�
1

4

��−1
exp

�
− x4

4σ4

�
dx.

This fluctuation result shows that our model is a self-organized model exhibiting
critical behaviour. Indeed it has the same behaviour than the critical generalized
Ising Curie-Weiss model and, by construction, it does not depend on any external
parameter. In this sense, we can conclude that this is a Curie-Weiss model of
self-organized criticality.

The proof of this fluctuation result relies on the study of the sums Sn and
Tn = (X1

n)2 + · · · + (Xn
n )2. With the help of the Fourier analysis, we compute

that the law of (Sn, Tn) has the density

(x, y) 7−→ 1

σnCn
exp

�
x2

2y
− y

2σ2

��
y − x2

n

�(n−3)/2

1x2<ny

with respect to the Lebesgue measure on R2, where Cn > 0 is an adequate
normalization constant. It is then straightforward to compute the expansion of
this density function around its minimum (0, σ2) and we conclude with the help
of Laplace’s method. However the computations we make here are not possible
for more general probability measures. In [5] we consider a class of distributions
having an even density with respect to the Lebesgue measure and satisfying some
integrability conditions and we prove a similar convergence result with more
technical methods using the Cramér theory. These methods are more robust,
but in this more general situation, we do not have the nice formulas available
in the Gaussian case. The Gaussian case we handle here is the nicest instance
of our model and it will serve to examine other questions on this model.

In section 2 we define properly our model for Gaussian measures and we state
our main result. The proof is split in the two remaining sections.

2 Main result

The model. We denote by ρσ the Gaussian distribution with mean 0 and va-
riance σ2 > 0. We consider (Xk

n)1≤k≤n an infinite triangular array of real-valued
random variables such that, for all n ≥ 1, (X1

n, . . . , X
n
n ) has the distributioneµn,σ, where

deµn,σ(x1, . . . , xn) =
1

Zn
exp

�
1

2

(x1 + · · ·+ xn)2

x21 + · · ·+ x2n

� nY
i=1

dρσ(xi)

=
1

(2πσ2)n/2Zn
exp

�
1

2

(x1 + · · ·+ xn)2

x21 + · · ·+ x2n
− x21 + · · ·+ x2n

2σ2

� nY
i=1

dxi

and

Zn =

Z
Rn

(2π)−n/2 exp

�
1

2

(x1 + · · ·+ xn)2

x21 + · · ·+ x2n
− 1

2
(x21 + · · ·+ x2n)

� nY
i=1

dxi.
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We define Sn = X1
n + · · ·+Xn

n and Tn = (X1
n)2 + · · ·+ (Xn

n )2.

We notice that the event {x21 + · · ·+ x2n = 0} is negligible for the measure ρ⊗nσ ,
so that the denominator in the exponential is almost surely positive. Moreover,
t 7−→ t2 is a convex function, thus for any n ≥ 1, 1 ≤ Zn ≤ en/2 < +∞.

Theorem 1. Under eµn,σ, (Sn/n, Tn/n) converges in probability towards (0, σ2).
Moreover

Sn
n3/4

L−→
n→+∞

�
σ√
2

Γ

�
1

4

��−1
exp

�
− y4

4σ4

�
dx.

To prove this theorem, we first compute, in section 3, the exact density of the
law of (Sn, Tn) under eµn,σ, for n large enough. Next, in section 4, we end the
proof by using Laplace’s method.

3 Computation of the law of (Sn, Tn)

In this section we compute the law of (Sn, Tn) under eµn,σ.

Lemma 2. We denote by νσ the law of (Z,Z2) where Z is a Gaussian random
variable with mean 0 and variance σ2 > 0. Under eµn,σ, the law of (Sn, Tn) is

1

Zn
exp

�
x2

2y

�
dν∗nσ (x, y).

Proof. Let f : R2 −→ R be a bounded measurable function. We have

Eµ̃n,σ (f(Sn, Tn)) =
1

Zn

Z
Rn
f(x1 + · · ·+ xn, x

2
1 + · · ·+ x2n)

exp

�
1

2

(x1 + · · ·+ xn)2

x21 + · · ·+ x2n

� nY
i=1

dρσ(xi).

The function h : (x, y) ∈ R × R\{0} 7−→ f(x, y) exp(x2/(2y)) is measurable.
Therefore

Eµ̃n,ρ(f(Sn, Tn)) =
1

Zn

Z
Rn
h(x1 + · · ·+ xn, x

2
1 + · · ·+ x2n)

nY
i=1

dρσ(xi)

=
1

Zn

Z
R2n

h(z1 + · · ·+ zn)
nY
i=1

dνσ(zi) =
1

Zn

Z
R2

h(z) dν∗nσ (z).

Hence the announced law of (Sn, Tn), under eµn,σ.

We denote by Γ the gamma function defined by

∀z > 0 Γ(z) =

Z +∞

0
xz−1e−xdx.

We compute next the density of ν∗nσ :
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Proposition 3. For n ≥ 5, under eµn,σ, the law of (Sn, Tn) is

1

σnCn
exp

�
x2

2y
− y

2σ2

��
y − x2

n

�(n−3)/2

1x2<ny dx dy,

where Cn = Zn
√

2nπnΓ((n− 1)/2).

For simplicity, we assume that σ2 = 1. We just write ν∗n for ν∗nσ . We denote
by Φn its characteristic function. To get the previous proposition, we use the
method of residue to compute ν∗n and a Fourier inversion formula to get the
density of ν∗n. For (u, v) ∈ R2, we have

Φn(u, v) = (Φ1(u, v))
n

=
�
E(eiuZ+ivZ2

)
�n

=

�Z
R
eiux+ivx

2

e−x
2/2 dx√

2π

�n
.

We need some preliminary results:

The Gamma distribution with shape k > 0 and scale θ > 0, denoted by Γ(k, θ),
is the probability distribution with density function

x 7−→ xk−1e−x/θ

Γ(k) θk
1x>0

with respect to the Lebesgue measure on R.

The complex logarithm function (or the principle value of complex logarithm),
denoted by Log, is defined on Ω = C\]−∞, 0] by

∀z = x+ iy ∈ Ω Log(z) =
1

2
ln(x2 + y2) + 2i arctan

�
y

x+
p
x2 + y2

�
.

If α ∈ C and z ∈ Ω, then the α-exponentiation of z is defined by

zα = exp(αLog(z)).

By chapter XV of [10], for k, θ > 0, the characteristic function of Γ(k, θ) is

u ∈ R 7−→ (1− θiu)−k.

We can now prove the following key lemma:

Lemma 4. Let t ∈ R and ζ ∈ C such that Re(ζ) > 0. ThenZ
R
eitx−ζx

2/2 dx =

Ê
2π

Re(ζ)
exp

�
− t

2

2ζ

��
1 + i

Im(ζ)

Re(ζ)

�−1/2
.

Proof. Let t ∈ R and ζ = a+ ib ∈ C such that Re(ζ) > 0. We define

K(t, ζ) =

Z
R
eitx−ζx

2/2 dx.

We factorize:

ixt− 1

2
ζx2 = −1

2
ζ

�
x− it

ζ

�2

− t2

2ζ
= −1

2
ζ

�
x− tb

|ζ|
− i ta
|ζ|

�2

− t2

2ζ
.
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Thus

et
2/2ζK(t, ζ) =

Z
R
e−ζ(x−tb/|ζ|−ita/|ζ|)

2/2 dx.

The change of variables y = x− tb/|ζ| gives us

et
2/2ζK(t, ζ) =

Z
R
e−ζ(y−ita/|ζ|)

2/2 dy = − lim
R→+∞

Z
γ1

e−ζz
2/2 dz,

where the last integral is the contour integral of the entire function z 7−→ e−ζz
2/2,

along the segment γ1 in the complex plane with end points R + ita/|ζ| and
−R+ ita/|ζ|.

Let γ be the rectangle in the complex plane joining successively the points
R+ ita/|ζ|, −R+ ita/|ζ|, −R and R. We apply the residue theorem:Z

γ
e−ζz

2/2 dz = 0

since z 7−→ exp(−ζz2/2) has no pole (see [13]). We denote γ1, γ2, γ3 and γ4 the
successive edges of the rectangle γ.

0−R R−R

R+ ita/|ζ|−R+ ita/|ζ| γ1

γ3

γ2 γ4

Z
γ3

e−ζz
2/2 dz =

Z R

−R
e−ζx

2/2 dx −→
R→+∞

Z
R
e−ζx

2/2 dx = 2

Z +∞

0
e−ζx

2/2 dx.

We make the change of variables y = x2 on ]0,+∞[:

2

Z +∞

0
e−ζx

2/2 dx =

Z +∞

0
e−ζy/2

dy
√
y

=

Z +∞

0
e−iby/2e−ay/2

dy
√
y

=

r
2

a
Γ

�
1

2

��
1 + i

b

a

�−1/2
since we recognize, up to a normalization factor, the characteristic function of
the Gamma distribution with shape 1/2 and scale 2/a. Moreover we have����Z

γ4

e−ζz
2/2 dz

���� =

����Z 1

0
exp

�
−ζ

2

�
R+

iat

|ζ|
x

�2� iat

|ζ|
dx

����
≤ a|t|
|ζ|

Z 1

0
exp

�
−aR

2

2
+
Ratbx

|ζ|
+
a

2

�
atx

|ζ|

�2�
dx

≤ a|t|
|ζ|

exp

�
−aR

2

2
+
Ra|tb|
|ζ|

+
a

2

�
at

|ζ|

�2�
−→

R→+∞
0.
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Likewise Z
γ2

e−ζz
2/2 dz −→

R→+∞
0.

Letting R go to +∞, we conclude thatr
2

a
Γ

�
1

2

��
1 + i

b

a

�−1/2
+ 0− et

2/2ζK(t, ζ) + 0 = 0.

Since Γ(1/2) =
√
π, we obtain the identity stated in the lemma.

For (u, v) ∈ R2, setting ζ = 1− 2iv ∈ { z ∈ C : Re(z) > 0 }, we have

Φn(u, v) =
1

(2π)n/2

�Z
R
eiux−ζx

2/2 dx

�n
.

Applying lemma 4 with u and ζ, we obtain the following proposition:

Proposition 5. The characteristic function Φn of the distribution ν∗n is

(u, v) ∈ R2 7−→ exp

�
−n

2

�
u2

1− 2iv
+ Log(1− 2iv)

��
.

Once we know the characteristic function Φn of the law ν∗n, a Fourier inversion
formula gives us its density. We first have to check that Φn is integrable with
respect to the Lebesgue measure on R2.

Let (u, v) ∈ R2. Since (1− 2iv)−1 = (1 + 2iv)/(1 + 4v2), we have

Re

�
u2

1− 2iv
+ Log(1− 2iv)

�
=

u2

1 + 4v2
+ ln(

p
1 + 4v2).

Using Fubini’s theorem, it follows thatZ
R2

|Φn(u, v)| du dv =

Z
R2

exp

�
− nu2

2(1 + 4v2)

�
(1 + 4v2)−n/4 du dv

=

Z
R

(1 + 4v2)−n/4
�Z

R
exp

�
− nu2

2(1 + 4v2)

�
du

�
dv

=

Z
R

(1 + 4v2)−n/4
r

2π(1 + 4v2)

n
dv

=

r
2π

n

Z
R

(1 + 4v2)−(n−2)/4 dv.

The function v 7−→ (1 + 4v2)−(n−2)/4 is continuous on R and integrable in the
neighbourhood of +∞ and −∞ if and only if n > 4.

Proposition 6. If n ≥ 5 then ν∗n has the density

(x, y) ∈ R2 7−→
�√

2nπnΓ

�
n− 1

2

��−1
exp

�
−y

2

��
y − x2

n

�(n−3)/2

1x2<ny

with respect to the Lebesgue measure on R2.
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Proof. We have seen that, if n ≥ 5, then Φn is integrable on R2. The Fourier
inversion formula (see [13]) implies that ν∗nσ has the density

fn : (x, y) 7−→ 1

(2π)2

Z
R2

e−ixu−iyv Φn(u, v) du dv

with respect to the Lebesgue measure on R2. Let (x, y) ∈ R2. By Fubini’s
theorem,

fn(x, y) =
1

(2π)2

Z
R

e−iyv

(1− 2iv)n/2

�Z
R

exp

�
−ixu− nu2

2(1− 2iv)

�
du

�
dv

=
1

(2π)2

Z
R

e−iyv

(1− 2iv)n/2
K

�
−x, n

1− 2iv

�
dv,

where K is defined by

∀a > 0 ∀(t, b) ∈ R2 K(t, a+ ib) =

Z
R
eitz−(a+ib)z

2/2 dz.

Lemma 4 implies that for any v ∈ R,

K

�
−x, n

1− 2iv

�
=

r
2π(1 + 4v2)

n
exp

�
−x

2(1− 2iv)

2n

�
(1 + 2iv)

−1/2

=

r
2π

n
exp

�
−x

2(1− 2iv)

2n

��
1 + 4v2

1 + 2iv

�1/2

=

r
2π

n
exp

�
−x

2(1− 2iv)

2n

�
(1− 2iv)1/2.

Thus

fn(x, y) =
1

(2π)2

r
2π

n

Z
R

exp

�
−iyv − x2(1− 2iv)

2n

�
(1− 2iv)−(n−1)/2 dv

=
1√
2πn

exp

�
−x

2

2n

�
1

2π

Z
R

exp

�
−iv

�
y − x2

n

��
(1− 2iv)−(n−1)/2 dv.

Therefore
√

2πn exp(x2/2n)fn(x, y) is the inverse Fourier transform of the dis-
tribution Γ((n− 1)/2, 2) taken at the point y − x2/n. Hence

√
2πn exp

�
x2

2n

�
fn(x, y) =

�
Γ

�
n− 1

2

�
2(n−1)/2

�−1�
y − x2

n

�(n−3)/2

× exp

�
−y

2
+
x2

2n

�
1y>x2/n.

Simplifying this expression, we get the proposition.

This previous result and proposition 2 imply that, for n ≥ 5, under eµn,σ, the
law of (Sn, Tn) on R2 is

C−1n exp

�
x2

2y
− y

2

��
y − x2

n

�(n−3)/2

1x2<ny dx dy.

We observe next that (σX1
n, . . . , σX

n
n ) has the distribution eµn,σ if and only

if (X1
n, . . . , X

n
n ) has the distribution eµn,1. Hence a straightforward change of

variables gives us proposition 3.

8



4 Proof of theorem 1

Let α, β ∈ ]0, 1], n ≥ 5 and f a bounded measurable function. The change of
variables (x, y) 7−→ (nαx, nβy) yields

Eµ̃n,1
�
f

�
Sn
nα
,
Tn
nβ

��
=
nα+β

Cn

Z
R2

f(x, y) exp

�
n2α−βx2

2y
− nβy

2

�
×
�
nβy − n2α−1x2

�(n−3)/2
1n2αx2<nβ+1y dx dy.

Factorizing by n(n−3)/2, we notice that all the terms in the integral are functions
of x2/n2−2α and y/n1−β . We obtain the following proposition.

Proposition 7. Let α, β ∈ ]0, 1]. If σ2 = 1 and n ≥ 5 then, under eµn,σ, the
distribution of (Sn/n

α, Tn/n
β) is

nα+βn(n−3)/2

Cn
exp

�
−nψ

�
x2

n2−2α
,

y

n1−β

��
ϕ

�
x2

n2−2α
,

y

n1−β

�
dx dy,

where ψ and ϕ are the functions defined on D+ = { (x, y) ∈ R2 : y > x ≥ 0 } by

ψ : (x, y) 7−→ 1

2

�
−x
y

+ y − ln(y − x)

�
,

ϕ : (x, y) 7−→ (y − x)−3/2 1D+(x, y).

We give next some properties of the map ψ. Especially they show why we choose
α = 3/4 and β = 1 in the previous proposition in order to prove theorem 1.

Lemma 8. The map ψ has a unique minimum at (0, 1) and, in the neighbou-
rhood of (0, 1),

ψ(x, y)− 1

2
=

1

4
(x2 + (y − 1)2) + o(‖x, y − 1‖2).

Moreover, we have

∀δ > 0 inf {ψ(x, y) : |x| ≥ δ or |y − 1| ≥ δ } > 1/2.

Proof. The map ψ is C2 on D+ and, for fixed y > 0,

∂ψ

∂x
(x, y) =

1

2

�
−1

y
+

1

y − x

�
≥ 0.

Equality holds if and only if x = 0. Thus x 7−→ ψ(x, y) is increasing on ]0, y[
and ψ(0, y) = (y − ln(y))/2. Hence for any (x, y) ∈ D+\{(0, 1)},

ψ(x, y) >
1

2
(y − ln(y)) >

1

2
= ψ(0, 1).

Therefore ψ has a unique minimum at (0, 1). In the neighbourhood of (0, 0),

ψ(x, 1 + h) =
1

2
(−x(1− h+ o(h2)) + 1 + h− (h− x− 1

2
(h− x)2 + o((h− x)2)

=
1

2
+
h2

4
+
x2

4
+ o(‖x, h‖2).
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Hence the announced expansion of ψ in the neighbourhood of (0, 1). Moreover,
if |y − 1| ≥ δ and x ∈ [0, y[, then

ψ(x, y) ≥ 1

2
(1 + δ − ln(1 + δ)) >

1

2
.

If x ≥ δ and y > x, then

2ψ(x, y) ≥ − δ
y

+ y − ln(y − δ) > inf
y>δ

�
− δ
y

+ y − ln(y − δ)
�
> 1

since δ 6= 0. Therefore inf {ψ(x, y) : |x| ≥ δ or |y − 1| ≥ δ } > 1/2.

By this lemma, for fixed (x, y), when n goes to +∞,

ψ

�
x2

n2−2α
,

y

n1−β

�
− 1

2
∼ x4

4
n3−4α +

n

4

� y

n1−β
− 1

�2
.

That is why we take α = 3/4 and β = 1.

Let us prove theorem 1. Let n ≥ 1 and let f : R2 −→ R be a continuous bounded
function. By proposition 7, we have

Eµ̃n,1
�
f

�
Sn
n3/4

,
Tn
n

��
=
n7/4n(n−3)/2

Cn

Z
R2

f(x, y) exp

�
−nψ

�
x2√
n
, y

��

× ϕ
�
x2√
n
, y

�
1√ny>x2 dx dy.

It follows from the expansion of ψ in lemma 8 that there exists δ > 0 such that
for (x, y) ∈ D+, if |x| < δ and |y − 1| < δ, then,

ψ(x, y)− 1

2
≥ 1

8
(x2 + (y − 1)2).

We denote

An =

Z
x2<δ

√
n

Z
|y−1|<δ

f(x, y) exp

�
−nψ

�
x2√
n
, y

��
ϕ

�
x2√
n
, y

�
1√ny>x2 dx dy.

The change of variables (x, y) 7−→ (x, y/
√
n+ 1) gives

√
nen/2An =

Z
x2<δ

√
n

Z
|y|<δ

√
n
f

�
x,

y√
n

+ 1

�
exp

�
−nψ

�
x2√
n
,
y√
n

+ 1

��

exp
�n

2

�
ϕ

�
x2√
n
,
y√
n

+ 1

�
1y+

√
n>x2 dx dy.

Lemma 8 implies that

nψ

�
x2√
n
,
y√
n

+ 1

�
− n

2
−→

n→+∞

x4

4
+
y2

4
.

Moreover the continuity of f and ϕ on D+ gives us

f

�
x,

y√
n

+ 1

�
ϕ

�
x2√
n
,
y√
n

+ 1

�
1y+

√
n>x21x2<δ

√
n1|y|<δ

√
n −→
n→+∞

f(x, 1).

10



Finally the function inside the integral defining
√
nen/2An is dominated by

(x, y) 7−→ ‖f‖∞ exp

�
−1

8
(x4 + y2)

�
,

which is independent of n and integrable with respect to the Lebesgue measure
on R2. By Lebesgue’s dominated convergence theorem, we have

√
nen/2An −→

n→+∞

Z
R2

f(x, 1)e−x
4/4e−y

2/4 dx dy =
√

4π

Z
R
f(x, 1)e−x

4/4 dx.

We define
Bδ = { (x, y) ∈ D+ : |x| < δ, |y − 1| < δ }

and

Bn =

Z
(x2/
√
n,y)∈Bc

δ

f(x, y) exp

�
−nψ

�
x2√
n
, y

��
ϕ

�
x2√
n
, y

�
1√ny>x2 dx dy.

Let ε = inf {ψ(x, y) : (x, y) ∈ Bcδ},

|Bn| ≤ e−(n−2)ε‖f‖∞
Z
R2

exp

�
−2ψ

�
x2√
n
, y

��
ϕ

�
x2√
n
, y

�
1√ny>x2 dx dy.

The change of variables (x, y) 7−→ (xn1/4, y) yields

√
nen/2|Bn| ≤ e2ε‖f‖∞e−n(ε−1/2)n3/4

Z
R2

e−2ψ(x
2,y)ϕ(x2, y)1x2<y dx dy.

Lemma 8 guarantees that ε > 1/2 and, using the change of variables given by
the function (x, y) 7−→ (x, y + x2), we getZ

R2

e−2ψ(x
2,y)ϕ(x2, y)1x2<y dx dy ≤ e

�Z
R
e−x

2

dx

��Z +∞

0

e−y
√
y
dy

�
< +∞.

Therefore
√
nen/2Bn goes to 0 as n goes to +∞. Finally

Z
R2

f(x, y) exp

�
−nψ

�
x2√
n
, y

��
ϕ

�
x2√
n
, y

�
1√ny>x2 dx dy

= An +Bn =
+∞

e−n/2√
n

�√
4π

Z
R
f(x, 1)e−x

4/4 dx+ o(1) + o(1)

�
.

If f = 1, we have

Cn
n7/4n(n−3)/2

∼
+∞

r
4π

n
e−n/2

Z
R
e−x

4/4 dx.

Hence

Eµ̃n,1
�
f

�
Sn
n3/4

,
Tn
n

��
−→

n→+∞

Z
R
f(x, 1)

e−x
4/4 dxR

R e
−u4/4 du

=

Z
R2

f(x, y)

�
e−x

4/4 dxR
R e
−u4/4 du

⊗ δ1(y)

�
.
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Since (σX1
n, . . . , σX

n
n ) has the distribution eµn,σ if and only if (X1

n, . . . , X
n
n ) has

the distribution eµn,1, we obtain that, under eµn,σ,

Sn
n3/4

L−→
n→+∞

e−x
4/4σ4

dxR
R e
−y4/4σ4 dy

and
Tn
n

L−→
n→+∞

σ2.

We also get that Sn/n converges in law (thus in probability) to 0. Finally the
ultimate change of variable y =

√
2σx1/4 implies thatZ

R
e−y

4/4σ4

dy = 2

Z +∞

0
e−y

4/4σ4

dy =
σ√
2

Z +∞

0
x1/4−1e−x dx =

σ√
2

Γ

�
1

4

�
.

This ends the proof of theorem 1.
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[5] Raphaël Cerf and Matthias Gorny. A Curie-Weiss model of Self-Organized
Criticality. The Annals of Probability, to appear, 2013.

[6] Jan De Boer, Bernard Derrida, Henrik Flyvbjerg, Andrew D. Jackson, and
Tilo Wettig. A simple model of self-organized biological evolution. Phys.
Rev. Lett., (73):906–909, 1994.

[7] Deepak Dhar. Theoretical studies of self-organized criticality. Phys. A,
369(1):29–70, 2006.

[8] Richard S. Ellis. Entropy, large deviations, and statistical mechanics. Clas-
sics in Maths. Springer-Verlag, 2006.

[9] Richard S. Ellis and Charles M. Newman. Limit theorems for sums of
dependent random variables occurring in statistical mechanics. Z. Wahrsch.
Verw. Gebiete, 44(2):117–139, 1978.

[10] William Feller. An introduction to probability theory and its applications.
Vol. II. Second edition. John Wiley & Sons Inc., 1971.

[11] Gunnar Pruessner. Self-Organised Criticality: Theory, Models and Charac-
terisation. Self-organised Criticality: Theory, Models, and Characterisation.
Cambridge University Press, 2012.

[12] Balázs Ráth and Bálint Tóth. Erdős-Rényi random graphs + forest fires =
self-organized criticality. Electron. J. Probab., 14:no. 45, 1290–1327, 2009.

[13] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., third
edition, 1987.

12



[14] Didier Sornette. Critical phenomena in natural sciences. Springer Series in
Synergetics. Springer-Verlag, second edition, 2006. Chaos, fractals, selfor-
ganization and disorder: concepts and tools.

[15] Donald L. Turcotte. Self-organized criticality. Reports on Progress in Phy-
sics, 62(10):1377, 1999.

13


