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Abstract

We pursue the study of the Curie-Weiss model of self-organized criticality
we designed in [5]. We extend our results to more general interaction func-
tions and we prove that, for a class of symmetric distributions satisfying
a Cramér condition (C) and some integrability hypothesis, the sum Sn of
the random variables behaves as in the typical critical generalized Ising
Curie-Weiss model. The fluctuations are of order n3/4 and the limiting
law is k exp(−λx4) dx where k and λ are suitable positive constants. In [5]
we obtained these results only for distributions having an even density.
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1 Introduction

In their famous article [3], Per Bak, Chao Tang and Kurt Wiesenfeld showed
that certain complex systems are naturally attracted by critical points, without
any external intervention. The amplification of small internal fluctuations can
lead to a critical state and cause a chain reaction leading to a radical change of
the system behavior. These systems exhibit the phenomenon of self-organized
criticality (SOC). In general SOC can be observed empirically or simulated on a
computer in various models. However the mathematical analysis of these models
turns out to be extremely difficult, even for the sandpile model (the archetype
of SOC, presented in [3]) whose definition is yet simple.

In [5] and [10], we introduced a Curie-Weiss model of self-organized critical-
ity (SOC): we transformed the distribution associated to the generalized Ising
Curie-Weiss model by implementing an automatic control of the inverse temper-
ature which forces the model to evolve towards a critical state. This is the model
given by (Xk

n)1≤k≤n such that, for all n ≥ 1, (X1
n, . . . , X

n
n ) has the distribution
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dρ(xi) ,

where ρ is a non-degenerate distribution on R and Zn is a normalization con-
stant. We proved that, if ρ has an even density which satisfies some integrability
conditions, then the fluctuations of Sn = X1

n + · · · + Xn
n are of order n3/4 and

the limiting law is �
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This fluctuation result shows that the sum Sn behaves asymptotically as in the
typical critical generalized Ising Curie-Weiss model. Moreover, by construction,
it does not depend on any external parameter. In this sense, we can conclude
that this is a Curie-Weiss model of self-organized criticality. Our result presents
an unexpected universal feature. Indeed, this is in contrast to the situation in
the critical generalized Ising Curie-Weiss model: at the critical point, the fluc-
tuations are of order n1−1/2k, where k depends on the distribution ρ. Moreover
our integrability conditions on ρ are weaker than those required to define the
generalized Ising Curie-Weiss model, studied by Richard S. Ellis and Charles
M. Newman in [8]. For instance, our result holds for any centered Gaussian
measure on R. The Gaussian case of our model can be handled with the help
of an explicit computation [10].

In this paper, we extend the main results of [5] in three directions:

? We solve a problem about the mass at 0 of ρ that we met in [5] by using
a conditioning argument. This allows us to extend the law of large numbers
associated to our model.

? The hypothesis that the law ρ has a density is essential in the proof of the
fluctuations result in [5]. Here we use arguments coming from the work of Anders
Martin-Löf [11] to extend this result to any symmetric probability measure which
satisfies some integrability hypothesis and a Cramér condition:

∀α > 0 sup
‖(s,t)‖≥α

����Z
R
eisz+itz

2

dρ(z)

���� < 1. (C)
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This includes a much larger class of probability measures. However the proof is
much more technical.

? We extend our model to more general interaction functions. This extension
is similar in spirit to the work of Richard S. Ellis and Theodor Eisele [7] in the
context of the generalized Ising Curie-Weiss model.

The model. Let g be a measurable real-valued function defined on R such that
g(u) ∼ u2/2 in the neighbourhood of 0 and

∀u ∈ R g(u) ≤ u2

2
.

Let ρ be a probability measure on R, which is not the Dirac mass at 0. We
consider an infinite triangular array of real-valued random variables (Xk

n)1≤k≤n
such that, for all n ≥ 1, (X1

n, . . . , X
n
n ) has the distribution eµn,ρ,g, whose density

with respect to ρ⊗n is

(x1, . . . , xn) 7−→ 1

Zn,g
exp

�
ng

�
x1 + · · ·+ xnÈ
n(x2

1 + · · ·+ x2
n)

��
1{x2

1+···+x2
n>0} ,

where

Zn,g =

Z
Rn

exp

�
ng

�
x1 + · · ·+ xnÈ
n(x2

1 + · · ·+ x2
n)

��
1{x2

1+···+x2
n>0}

nY
i=1

dρ(xi) .

We define Sn = X1
n + · · ·+Xn

n and Tn = (X1
n)2 + · · ·+ (Xn

n )2.

We state next our main result, which is a strengthening of theorems 1 and 2
of [5]:

Theorem 1. Let ρ be a symmetric probability measure on R with positive vari-
ance σ2 and such that

∃v0 > 0

Z
R
ev0z

2

dρ(z) < +∞ .

Law of large numbers: Under eµn,ρ,g, (Sn/n, Tn/n) converges in probability to-
wards (0, σ2).

We suppose in addition that g has a fourth derivative at 0 and that the following
Cramér condition holds:

∀α > 0 sup
‖(s,t)‖≥α

����Z
R
eisz+itz

2

dρ(z)

���� < 1. (C)

Let µ4 be the fourth moment of ρ. We denote m4 = −g(4)(0)/2 ≥ 0.

Fluctuations result: Under eµn,ρ,g,�
µ4 +m4σ

4
�1/4 Sn

σ2n3/4
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The condition (C) is called the Cramér condition for the law of (Z,Z2), where Z
is a random variable with distribution ρ. The class of probability measures
satisfying (C) is much larger than the class of probability measures having a
density. Indeed, by the Lebesgue decomposition theorem (see [12]), there exist
three non-negative real numbers a, b, c such that a+ b+ c = 1 and

ρ = a ρac + b ρd + c ρs ,

where ρac is a probability measure with density f , ρd is a discrete probability
measure and ρs is a singular probability measure having no atoms. If a > 0, we
say that ρ has an absolutely continuous component.

Proposition 2. If ρ has an absolutely continuous component, then

∀α > 0 sup
‖(s,t)‖≥α

����Z
R
eisz+itz

2

dρ(z)

���� < 1 .

For example, the law

ρ0 =
1

16
δ−1 +

3

4
δ0 +

1

16
δ1 + exp

�
−x

2

2

�
dx

8
√

2π

satisfies the hypothesis of theorem 1.

In [5], we treated the case where g(u) = u2/2 for any u ∈ R. We obtained a law
of large numbers under eµn,ρ,g, for symmetric probability measures ρ such that
ρ({0}) < e−1/2 or such that ρ(]0, c[) = 0 for some c > 0. The above distribution
ρ0 does not satisfy this hypothesis. Moreover, in the fluctuations theorem of [5],
we only deal with a distribution ρ having an even density f which satisfiesZ

R2

fp(x+ y)fp(y)|x|1−p dx dy < +∞ ,

for some p ∈ ]1, 2]: once again this is not the case for ρ0. Hence theorem 1
improves the main results of [5]. Yet its proof is much more complicated: we
have to use an approximation of the identity to obtain an asymptotic relation
between ν∗nρ and its Cramér transform. The final Laplace’s method is also much
more technical than in [5].

Remark: If we start with the model studied in [7] and we follow the same road
as in [5], then we end up with the distribution eµ?n,ρ,g whose density with respect
to ρ⊗n is

(x1, . . . , xn) 7−→ 1

Z?n,g
exp

 
n2

g
�
(x1 + · · ·+ xn)/n

�
x2

1 + · · ·+ x2
n

!
1{x2

1+···+x2
n>0} ,

where Z?n,g is the renormalization constant. In this case, the result stated in
theorem 1 holds as well, but with (µ4 +m4σ

6)1/4 instead of (µ4 +m4σ
4)1/4.

This paper is organized as follows. In section 2, we give some preliminaries
containing a list of all the results derived from [5] which are essential for the
proof of our main theorem. In section 3 we extend the results of [5] around
Varadhan’s lemma with a conditioning argument. Next, in section 4, we give
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some generalities on the Cramér condition, we prove proposition 2 and a key
theorem : an asymptotic relation between the n-fold tensor product of a prob-
ability measure and its Cramér transform (theorem 8). Finally, in section 5, we
use Laplace’s method in order to prove theorem 1, with the help of the results
from sections 3 and 4. We end the paper by an appendix presenting the proof
of theorem 8.

2 Preliminaries

Here we give some notations and we list all the results derived from the sections
3 and 5 of [5] which are essential for the proof of theorem 1.

Let F and Fg be the functions defined on R× ]0,+∞[ by

∀(x, y) ∈ R× ]0,+∞[ F (x, y) =
x2

2y
and Fg(x, y) = g

�
x
√
y

�
.

We define the sets

∆ = { (x, y) ∈ R2 : x2 ≤ y } and ∆∗ = ∆\{(0, 0)} .

We denote by νρ the law of (Z,Z2), where Z is a random variable with distri-
bution ρ, and by eνn,ρ the law of (Sn/n, Tn/n) under ρ∗n. Under eµn,ρ,g, the law
of (Sn/n, Tn/n) is

exp (nFg(x, y))1∆∗(x, y) deνn,ρ(x, y)Z
∆∗

exp (nFg(s, t)) deνn,ρ(s, t) .

Let ρ be a symmetric probability measure on R with variance σ2. We define the
Laplace transform Λ of νρ by

∀(u, v) ∈ R2 Λ(u, v) = ln

Z
R
euz+vz

2

dρ(z)

and by DΛ the set of the points (u, v) ∈ R2 such that Λ(u, v) < +∞. We define
next the Cramér transform I of νρ by

∀(x, y) ∈ R2 I(x, y) = sup
(u,v)∈R2

(ux+ vy − Λ(u, v) )

and by DI the set of the points (x, y) ∈ R2 such that I(x, y) < +∞.

We suppose that (0, 0) ∈ D
o

Λ. Then I is a good rate function, i.e., it is non-
negative and for any α > 0, the set { (x, y) ∈ R2 : I(x, y) ≤ α } is compact.
Moreover Cramér’s theorem states that (eνn,ρ)n≥1 satisfies a large deviations
principle, with speed n, governed by I. Next

I(0, 0) =

§
− ln ρ({0}) if ρ({0}) > 0 ,

+∞ if ρ({0}) = 0 ,

and the I −F has a unique minimum on ∆∗ at (0, σ2), with (I −F )(0, σ2) = 0.
Moreover, if the support of ρ contains at least three points and if µ4 denotes
the fourth moment of ρ, then, when (x, y) goes to (0, σ2),

I(x, y)− F (x, y) ∼ µ4x
4

12σ8
+

(y − σ2)2

2(µ4 − σ4)
.

5



Finally, since g has a fourth derivative at 0, the Taylor-Young formula implies
that

g(u) =
u2

2
+ g(3)(0)

u3

6
−m4

u4

12
+ o(u4) .

We have g(u) ≤ u2/2 for any u ∈ R. Therefore g(3)(0) = 0, m4 ≥ 0 and thus,
when (x, y) goes to (0, σ2),

F (x, y)− Fg(x, y) =
m4x

4

12y2
(1 + o(1)) =

m4x
4

12σ4
+ o(‖(x, y)‖4) .

As a consequence

I(x, y)− Fg(x, y) ∼ (µ4 +m4σ
4)x4

12σ8
+

(y − σ2)2

2(µ4 − σ4)
.

Remark: In the case of the model given by the distribution eµ?n,ρ,g, defined
in the remark at the end of the introduction, we replace Fg by the function
(x, y) ∈ R× ]0,+∞[ 7−→ g(x)/y in the sections 2-5. The only difference is that,
when (x, y) goes to (0, σ2),

I(x, y)− Fg(x, y) ∼ (µ4 +m4σ
6)x4

12σ8
+

(y − σ2)2

2(µ4 − σ4)
.

3 Around Varadhan’s lemma

In section 6 of [5], we proved the following result:

Lemma 3. Let ρ be a symmetric probability measure on R such that (0, 0) ∈ D
o

Λ

and ρ({0}) = 0. Let σ2 denote the variance of ρ. If A is a closed subset of R2

which does not contain (0, σ2) then

limsup
n→+∞

1

n
ln

Z
∆∗∩A

exp

�
nx2

2y

�
deνn,ρ(x, y) < 0 .

Actually we obtained in [5] this same conclusion for symmetric measures ρ such
that ρ({0}) < e−1/2 or such that ρ(]0, c[) = 0 for some c > 0. This restriction is
due to the behaviour of I − F near the point (0, 0), which is a singularity of F .

In this section, we will extend this result to any non-degenerate symmetric
probability measure on R such that (0, 0) ∈ D

o

Λ. To this end, we will rely on a
conditioning argument in order to reduce the problem to the case of measures
which have no point mass at 0, and to apply lemma 3. We focus first on what
happens in the neighbourhood of (0, 0).

Proposition 4. Suppose that ρ is a symmetric probability measure on R with
positive variance σ2 and such that (0, 0) ∈ D

o

Λ. There exists γ > 0 such that,
for δ ∈ ]0, σ2[ small enough and for n large enough,Z

∆∗
enx

2/(2y)10<y≤δ deνn,ρ(x, y) ≤ e−nγ .
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We notice that the constant γ only depends on ρ (and not δ).

Proof. If ρ({0}) = 0 then lemma 3 implies that the constant

γ = −1

2
limsup
n→+∞

1

n
ln

Z
∆∗
enx

2/(2y)10<y≤σ2/2 deνn,ρ(x, y)

is positive since { (x, y) ∈ R2 : 0 ≤ y ≤ σ2/2 } is a closed set which does not
contain (0, σ2). For δ ∈ ]0, σ2/2[, we have then

limsup
n→+∞

1

n
ln

Z
∆∗
enx

2/(2y)10<y≤δ deνn,ρ(x, y) ≤ −2γ < −γ .

Hence the result holds for probability measures which have no point mass at 0.

We suppose now that ρ({0}) > 0. Let n ≥ 1 and X1, . . . , Xn be independent
random variables with common distribution ρ. We put

Sn =
nX
i=1

Xi and Tn =
nX
i=1

X2
i .

For δ > 0 small enough, we denote

En,δ =

Z
∆∗
enx

2/(2y)10<y≤δ deνn,ρ(x, y) .

Since eνn,ρ(∆) = 1, we have

En,δ = E
�
eS

2
n/(2Tn)10<Tn≤nδ

�
.

For any c > 0, we have

En,δ ≤ E
�
eS

2
n/(2Tn)1Tn>01Tn/n≤c|Sn/n|

�
+ E

�
eS

2
n/(2Tn)1c|Sn/n|<Tn/n≤δ

�
and we write this sum In,1 + In,2.

0
×

y = x2

y=c|x|

∆

δ

×(0, σ2)

In the figure, In,1 is an integral on the vertically hatched area and In,2 is an
integral on the horizontally hatched area.
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We notice that, if c|Sn/n| < Tn/n ≤ δ, then

S2
n

2Tn
≤ T 2

n

2c2Tn
≤ Tn

2c2
≤ nδ

2c2
.

We have thus

In,2 ≤ exp

�
nδ

2c2

�
P
�
c

����Snn ���� < Tn
n
≤ δ
�
.

We denote α = − ln ρ({0})/2 > 0. The function I is lower semi-continuous,
thus there exists a neighbourhood U of (0, 0) such that

∀(x, y) ∈ U I(x, y) ≥ I(0, 0)− α

2
= −

�
ln ρ({0}) +

α

2

�
.

We can take δ small enough so that { (x, y) ∈ R2 : c|x| < y ≤ δ } ⊂ U . We
choose c = σ/

√
α (which only depends on ρ). Cramér’s theorem (see [6]) implies

that

limsup
n→+∞

1

n
ln In,2 ≤

δ

2c2
− inf
U
I ≤ δ

2c2
+ln ρ({0})+

α

2
= ln ρ({0})+

α

2

�
1 +

δ

σ2

�
.

If δ < σ2 then this last expression is smaller than

ln ρ({0}) + α = −2α+ α = −α .

Hence, for n large enough,

In,2 ≤ exp
�
−nα

2

�
.

Let us focus now on In,1. We define the random variable Nn by

Nn = { k ∈ {0, . . . , n} : Xk = 0 }.

We have

In,1 = E
�
eS

2
n/(2Tn)1Tn>01Tn/n≤c|Sn/n|

�
= E

�
eS

2
n/(2Tn)1Tn>01Tn≤c|Sn|

�
=
n−1X
k=0

E
�
eS

2
n/(2Tn)1Tn≤c|Sn|1Nn=k

�
and, for any k ∈ {0, . . . , n− 1},

E
�
eS

2
n/(2Tn)1Tn≤c|Sn|1Nn=k

�
= E

�
eS

2
n/(2Tn)1Tn≤c|Sn|

X
1≤i1<i2<···<ik≤n

1Xi1=0 . . . 1Xik=0 1∀j /∈{i1,...,ik}Xj 6=0

�
=

X
1≤i1<i2<···<ik≤n

E
�
eS

2
n/(2Tn)1Tn≤c|Sn|1Xi1=0 . . . 1Xik=0 1∀j /∈{i1,...,ik}Xj 6=0

�
.

The random variables X1, . . . , Xn are exchangeable, hence the expectations in
the above sum are equal:

E
�
eS

2
n/(2Tn)1Tn≤c|Sn|1Nn=k

�
=

�
n

k

�
E
�
eS

2
n/(2Tn)1Tn≤c|Sn|1X1 6=0 . . . 1Xn−k 6=0 1Xn−k+1=0 . . .1Xn=0

�
=

�
n

k

�
E
�
eS

2
n−k/(2Tn−k)1Tn−k≤c|Sn−k|1X1 6=0 . . . 1Xn−k 6=0 1Xn−k+1=0 . . .1Xn=0

�
.
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By the independence of X1, . . . , Xn, we have

E
�
eS

2
n/(2Tn)1Tn≤c|Sn|1Nn=k

�
=

�
n

k

� nY
j=n−k+1

P(Xj = 0)E
�
eS

2
n−k/(2Tn−k)1Tn−k≤c|Sn−k|1X1 6=0 . . . 1Xn−k 6=0

�
=

�
n

k

�
ρ({0})k(1− ρ({0}))n−k E

 
eS

2
n−k/(2Tn−k)1Tn−k≤c|Sn−k|

n−kY
j=1

1Xj 6=0

P(Xj 6= 0)

!
.

For any k ∈ {1, . . . , n}, we set

uk = E

 
eS

2
k/(2Tk)1Tk≤c|Sk|

kY
j=1

1Xj 6=0

P(Xj 6= 0)

!
so that we have

In,1 =
n−1X
k=0

un−k

�
n

k

�
ρ({0})k(1−ρ({0}))n−k=

nX
k=1

uk

�
n

k

�
ρ({0})n−k(1−ρ({0}))k.

We denote by ρ the probability measure ρ conditioned to R\{0}, i.e.,

ρ = ρ(·|R\{0}) =
ρ(· ∩ R\{0})
1− ρ({0})

,

so that

∀k ∈ {1, . . . , n} uk =

Z
∆∗
ekx

2/(2y)1y≤c|x| deνk,ρ(x, y) .

The measure ρ is symmetric, ρ({0}) = 0 and

∀(u, v) ∈ R2 Λ(u, v) = ln

Z
R
euz+vz

2

dρ(z) ≤ Λ(u, v)− ln(1− ρ({0})) ,

thus (0, 0) ∈ D
o

Λ̄. Moreover the variance of ρ is σ2 = σ2(1− ρ({0}))−1 and the
closed set { (x, y) ∈ R2 : y ≤ c|x| } does not contain (0, σ2). Applying lemma 3,
we get

limsup
k→+∞

1

k
ln

Z
∆∗
ekx

2/(2y)1y≤c|x| deνk,ρ(x, y) < 0 .

Thus there exist ε0 > 0 and n0 ≥ 1 such that

∀k ≥ n0 uk ≤ exp(−kε0) .

For n > n0, we write In,1 = An +Bn with

An =

n0X
k=1

uk

�
n

k

�
ρ({0})n−k(1− ρ({0}))k

and

Bn =
nX

k=n0+1

uk

�
n

k

�
ρ({0})n−k(1− ρ({0}))k .
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For all k ≥ 1, we have eνk,ρ(∆) = 1 thus uk ≤ exp(k/2) and then

An ≤ ρ({0})n
n0X
k=1

ek/2nk
�
ρ({0})−1 − 1

�k
≤ ρ({0})nn0e

n0/2nn0 max
�
1,
�
ρ({0})−1 − 1

�n0
�
.

Moreover

Bn ≤
nX

k=n0+1

e−kε0
�
n

k

�
ρ({0})n−k(1− ρ({0}))k

≤
�
ρ({0}) + e−ε0(1− ρ({0}))

�n
.

Therefore, setting

β = − ln
�
ρ({0}) + e−ε0(1− ρ({0}))

�
> 0 ,

we have that, for n large enough,

In,1 = An +Bn ≤ exp(−nα) + exp(−nβ) .

We notice that ε0, α and β only depend on ρ.

Finally we set γ = min(α/4, β/2) (which only depends on ρ). For δ ∈ ]0, σ2[
small enough and n large enough, we have

En,δ ≤ In,1 + In,2 ≤ exp(−nγ) .

This proves the proposition.

Now we can state the main result of this section, which is the announced refine-
ment of lemma 3 and which is essential to the proof of theorem 1.

Proposition 5. Let ρ be a symmetric probability measure on R with a positive
variance σ2 and such that (0, 0) ∈ D

o

Λ. If A is a closed subset of R2 which does
not contain (0, σ2) then

limsup
n→+∞

1

n
ln

Z
∆∗∩A

exp

�
nx2

2y

�
deνn,ρ(x, y) < 0 .

Proof. By proposition 4, there exist γ > 0 and δ > 0 such that

limsup
n→+∞

1

n
ln

Z
∆∗
enx

2/(2y)10<y≤δ deνn,ρ(x, y) ≤ −γ .

We set Aδ = { (x, y) ∈ ∆ ∩A : y ≥ δ }. We have

∆∗ ∩A ⊂ { (x, y) ∈ ∆∗ : 0 < y ≤ δ } ∪Aδ .

The set Aδ is closed, it does not contain (0, σ2) and F is continuous on it. The
usual Varadhan’s lemma (see [6]) implies that

limsup
n→+∞

1

n
ln

Z
Aδ

enx
2/(2y) deνn,ρ(x, y) < − inf

Aδ
(I − F ) .
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As a consequence

limsup
n→+∞

1

n
ln

Z
∆∗∩A

exp

�
nx2

2y

�
deνn,ρ(x, y) ≤ max

�
−γ , − inf

Aδ
(I − F )

�
.

Since (0, 0) ∈ D
o

Λ, I is a good rate function and I − F attains its minimum on
the closed set Aδ. Since Aδ does not contain (0, σ2), we have

max

�
−γ , − inf

Aδ
(I − F )

�
< 0

and the proposition is proved.

4 The Cramér condition

Let d ≥ 1. For any z = (a1 + ib1, . . . , ad + ibd) ∈ Cd and x = (x1, . . . , xd) ∈ Rd,
we denote

〈z, x〉 =
dX
k=1

akxk + i
dX
k=1

bkxk .

If z ∈ Rd then 〈z, x〉 is the Euclidean inner product of z and x.

Let ν be a non-degenerate probability measure on Rd. We denote by L its Log-
Laplace and by J its Cramér transform. Let DL and DJ be the domains of Rd
where the functions L and J are respectively finite. We put

DM = { z = a+ ib ∈ Cd : a ∈ DL }

and we define the function M by

∀z ∈ DM M(z) =

Z
Rd
e〈z,x〉 dν(x) .

We notice that the function s ∈ Rd 7−→ lnM(s) is the Log-Laplace L of ν and
that s ∈ Rd 7−→M(is) is the Fourier transform of ν.

One of the key ingredients for proving the main theorem of [5] is the theorem
11 of [5] (which is extracted from [1]). This theorem allows us to express the
density of ν∗n as a function of J and, under the condition

∀α > 0 sup
‖s‖≥α

|M(is)| < 1, (C)

we can then obtain an asymptotic expansion. The condition (C) is called the
Cramér condition. In [11], Anders Martin-Löf uses an approximation of the
identity to obtain a similar expression for more general measures on R satisfying
the condition (C), without requiring the existence of a density.

In this section we will prove d-dimensional analogs of the results of [11].
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a) Around the Cramér condition

We give here a sufficient condition for a measure ν on Rd to satisfy the Cramér
condition (C).

Lemma 6. If there exists s0 6= 0 such that |M(is0)| = 1 then ν is an arithmetic
measure, i.e., there exists (a, b) ∈ R2 such that

ν({x ∈ Rd : 〈s0, x〉 ∈ a+ bZ }) = 1 .

Proof. Suppose that |M(is0)| = 1 for some s0 6= 0. Thus

1 =

����Z
Rd
ei〈s0,x〉 dν(x)

���� ≤ Z
Rd

dν(x) = 1 .

We are in the equality case of this classical inequality, that is, there exists b0 ∈ R
such that

ei〈s0,x〉 = eib0 ν a.s. ,

whence
ν({x ∈ Rd : 〈s0, x〉 ∈ b0 + 2πZ }) = 1

and the lemma is proved.

Suppose that ν has a density with respect to the Lebesgue measure. By the
Riemann-Lebesgue lemma,

|M(is)| =
����Z

Rd
ei〈s,x〉 dν(x)

���� −→
‖s‖→+∞

0 .

As a consequence, if ν does not satisfy (C), then there exists s0 6= 0, such that
|M(is0)| = 1. By the previous lemma, ν is arithmetic. This is absurd. Therefore
any probability measure having a density with respect to the Lebesgue measure
satisfies (C). Moreover, by the Lebesgue decomposition theorem (see [12]), a
probability measure ν can be represented as the sum of three components:

ν = a νac + b νd + c νs ,

where νac is an absolutely continuous probability measure, νd is a discrete prob-
ability measure, νs is a singular probability measure with no atoms and a, b, c
are three non-negative real numbers such that a + b + c = 1. If a > 0, we
say that ν has an absolutely continuous component. An absolutely continuous
probability measure admits a density, thus we have the following proposition:

Proposition 7. If ν has an absolutely continuous component then it satisfies
the Cramér condition (C).

We end this section by giving the proof of proposition 2: we suppose that
ρ = a ρac+b ρd+c ρs, where a > 0 and ρac is a probability measure on R having
a density f . We cannot use proposition 7 directly because νρ does not have a
density. However, we saw in lemma 16 of [5] that, if νρac denotes the law of
(Z,Z2) where Z is a random variable with distribution ρac, then ν∗2ρac has the
density

f2 : (x, y) 7−→ 1p
2y − x2

f

�
x+

p
2y − x2

2

�
f

�
x−

p
2y − x2

2

�
1x2<2y .

12



We can write ρ∗2 = a2ρ∗2ac + (1− a2)η, where η is the probability measure on R2

defined by

η =
1

1− a2
(b2ρ∗2d + c2ρ∗2s + 2ab ρac ∗ ρd + 2ac ρac ∗ ρs + 2bc ρd ∗ ρs) .

We have then����Z
R
eisz+itz

2

dρ(z)

����2 =

����Z
R2

eis(x+y)+it(x2+y2) dρ(x) dρ(y)

����
≤ a2

����Z
R2

eis(x+y)+it(x2+y2) dρ∗2ac(x, y)

����+ (1− a2)

����Z
R2

dη(x, y)

����
≤ a2

����Z
R2

eisu+itv dν∗2ρac(u, v)

����+ 1− a2.

Hence

sup
‖(s,t)‖≥α

����Z
R
eisz+itz

2

dρ(z)

����2 ≤ a2 sup
‖(s,t)‖≥α

����Z
R2

eisu+itvf2(u, v) du dv

����+ 1− a2 .

Proposition 7 implies that the supremum in the right side of the previous in-
equality is stricly smaller that 1. This ends the proof of proposition 2.

b) An asymptotic relation with the Cramér transform

We define the function k by

∀x = (x1, . . . , xd) ∈ Rd k(x) =
dY
j=1

max(1− |xj |, 0)

and, for c > 0, the function kc by

∀x ∈ Rd kc(c) =
1

cd
k
�x
c

�
.

It is an approximation of the identity on Rd since the integral of k is equal to 1.
Finally, for any n ≥ 1 and c > 0, we introduce

ϕn,c : x ∈ Rd 7−→
Z
Rd
kc(s− nx) dν∗n(s) .

We notice that ϕn,c(x) = (kc ∗ ν∗n)(nx) for any x ∈ Rd. A standard result on
the approximations of the identity says that, if ν∗n has a density fn, then

lim
c→0

Z
Rd
|ϕn,c(x)− fn(nx)| dx = 0 .

This suggests that the asymptotic behaviour of ϕn,c and ν∗n are related, even
in the general case when ν∗n does not have a density. The following theorem is
the key result for the proof of theorem 1:

13



Theorem 8. Let ν be a non-degenerate probability measure on Rd such that the
interior of DL is not empty. Let KJ be a compact subset of AJ , the admissible
domain of J . If ν satisfies the Cramér condition

∀α > 0 sup
‖s‖≥α

|M(is)| < 1, (C)

then there exists γ > 0 such that, when n goes to +∞ and c goes to 0, uniformly
over x ∈ KJ ,

ϕn,c(x) = (2πn)−d/2
�
det D2

xJ
�1/2

e−nJ(x)
�
1 + o(1) +O

�
nd/2e−γnc−d

��
.

We postpone the proof of this theorem in appendix.

5 Proof of theorem 1

In this section we use first proposition 5 to prove the law of large numbers
under eµn,ρ,g. Next, in order to prove the fluctuations theorem, we use Laplace’s
method: to this end, we introduce an integral with the approximation of the
identity of section 4. Then proposition 8 gives the expansion of this integral. The
technical part of the proof is to show that the remaining terms are negligible.

Suppose that ρ is a symmetric probability measure on R with positive vari-
ance σ2 and such that

∃v0 > 0

Z
R
ev0z

2

dρ(z) < +∞ .

a) Proof of the law of large numbers

The fact that g(u) ∼ u2/2 in the neighbourhood of 0 implies that Fg is positive
on some open neighbourhood V of (0, σ2), which is included in ∆∗. We have then

Zn,g =

Z
∆∗

exp (nFg(x, y)) deνn,ρ(x, y) ≥ eνn,ρ(V) .

The large deviations principle satisfied by (eνn,ρ)n≥1 implies that

liminf
n→+∞

1

n
lnZn,g ≥ liminf

n→+∞

1

n
ln eνn,ρ(V) ≥ − inf

(x,y)∈V
I(x, y) = 0 .

We denote by θn,ρ,g the distribution of (Sn/n, Tn/n) under eµn,ρ,g. Let U be an
open neighbourhood of (0, σ2) in R2. Since Fg ≤ F , the results of section 2 and
proposition 5 imply that

limsup
n→+∞

1

n
ln θn,ρ,g(Uc) ≤ limsup

n→+∞

1

n
ln

Z
∆∗∩Uc

exp (nFg(x, y)) deνn,ρ(x, y)

− liminf
n→+∞

1

n
lnZn,g < 0.

Hence there exist ε > 0 and n0 ∈ N such that

∀n > n0 θn,ρ(Uc) ≤ exp(−nε) .
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Thus, for each open neighbourhood U of (0, σ2),

lim
n→+∞

eµn,ρ,g ��Sn
n
,
Tn
n

�
∈ Uc

�
= 0 .

This means that, under eµn,ρ,g, (Sn/n, Tn/n) converges in probability to (0, σ2).

b) Proof of the fluctuations result

We suppose in addition that g has a fourth derivative at 0 and that ρ satisfies

∀α > 0 sup
‖(s,t)‖≥α

����Z
R
eisz+itz

2

dρ(z)

���� < 1. (C)

This is the Cramér condition for νρ. Let us prove that, under eµn,ρ,g,
Sn
n3/4

L−→
n→∞

�
4(µ4 +m4σ

4)

3σ4

�1/4

Γ

�
1

4

�−1

exp

�
−µ4 +m4σ

4

12σ8
s4

�
ds .

This is equivalent to the convergence announced in theorem 1. For u ∈ R, we
define

En(u) =

Z
Rn

exp

�
iu
x1 + · · ·+ xn

n3/4
+ ng

�
x1 + · · ·+ xnÈ
n(x2

1 + · · ·+ x2
n)

��

× 1{x2
1+···+x2

n>0}

nY
j=1

dρ(xj).

Let us notice that Zn,g = En(0) and that

Eµ̃n,ρ
�
exp

�
iu

Sn
n3/4

��
=
En(u)

En(0)
.

By Paul Levy’s theorem, in order to obtain the convergence in law stated in
theorem 1, it is necessary and sufficient to prove that, for any u ∈ R, the
sequence (En(u)/En(0))n≥1 converges towardsZ

R
exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dxZ

R
exp

�
− (µ4 +m4σ

4)x4

12σ8

�
dx

.

To this end, we will compute the expansion of En(u), n ≥ 1, u ∈ R. We denote
by eνn,ρ the law of (Sn/n, Tn/n) under ρ⊗n. We have

∀u ∈ R En(u) =

Z
∆∗

exp
�
iuxn1/4 + nFg(x, y)

�
deνn,ρ(x, y) .

Let u ∈ R and δ > 0. We denote by Bδ the open ball in R2 of radius δ centered
at (0, σ2). We choose δ small enough so that Bδ is included in KI , a compact
subset of AI ⊂ ∆∗. We define

fn : (x, y) ∈ R2 7−→ exp(iuxn1/4) .
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For all n ≥ 1, we write En(u) = An +Bn with

An =

Z
Bδ

fn e
nFg deνn,ρ and Bn =

Z
(Bδ)

c∩∆∗
fn e

nFg deνn,ρ.
First, since Fg ≤ F , proposition 5 implies that there exists ε0 > 0 such that, for
n large enough,

|Bn| ≤ exp(−nε0) .

We next compute the expansion of An, using the results of the last section. We
define the function k by

∀(x, y) ∈ R2 k(x, y) = max(1− |x|, 0) × max(1− |y|, 0)

and, for c > 0, we define kc by

∀(x, y) ∈ R2 kc(x, y) =
1

c2
k
�x
c
,
y

c

�
.

We put

An,c,1 =

Z
R2

kc/n ∗
�
fne

nFg1Bδ

�
(s, t) deνn,ρ(s, t)

and An,c,2 = An −An,c,1. Fubini’s theorem implies that

An,c,1 =

Z
R2

kc/n ∗
�
fn e

nFg1Bδ

�� s
n
,
t

n

�
dν∗nρ (s, t)

=

Z
R2

�Z
R2

kc/n

�
s

n
− x, t

n
− y
�
fn(x, y) enFg(x,y)1Bδ(x, y) dx dy

�
dν∗nρ (s, t)

=

Z
R2

fn(x, y) enFg(x,y)1Bδ(x, y)

�Z
R2

n2kc (s− nx, t− ny) dν∗nρ (s, t)

�
dx dy

= n2

Z
Bδ

fn(x, y) enFg(x,y)ϕn,c(x, y) dx dy,

where

∀(x, y) ∈ R2 ϕn,c(x, y) =

Z
R2

kc (s− nx, t− ny) dν∗nρ (s, t) .

We denote
Hn,c : (x, y) ∈ R2 7−→ nenI(x,y)ϕn,c(x, y) .

Hence

An,c,1 = n

Z
Bδ

fn(x, y) e−n(I−Fg)(x,y)Hn,c(x, y) dx dy.

The measure νρ satisfies the Cramér condition, thus, by theorem 8, there exists
γ > 0 such that, when n goes to +∞ and c goes to 0, uniformly over (x, y) ∈ KI ,

Hn,c(x, y) =
1

2π

�
det D2

(x,y)I
�1/2 �

1 + o(1) +O
�
ne−γnc−2

��
.

We suppose that
εn,c = ne−γnc−2 −→

n→∞
c→0

0 .
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Then, uniformly over (x, y) ∈ KI ,

Hn,c(x, y) −→
n→∞
c→0

1

2π

�
det D2

(x,y)I
�1/2

.

We denote
Bδ,n = { (x, y) ∈ R2 : ‖(xn−1/4, yn−1/2)‖ ≤ δ } ,

where ‖ · ‖ is the euclidean norm on R2. Let us make the change of variable

given by (x, y) 7−→
�
xn−1/4, yn−1/2 + σ2

�
with Jacobian n−3/4:

An,c,1 = n1/4

Z
Bδ,n

exp
�
iux− n(I − Fg)

�
xn−1/4, yn−1/2 + σ2

��
×Hn,c

�
xn−1/4, yn−1/2 + σ2

�
dx dy.

We check now that we can apply the dominated convergence theorem to this
integral. The uniform expansion of Hn,c means that for any α > 0, there exist
n0 ∈ N and c0 > 0 such that

(x, y) ∈ KI n ≥ n0 c ≤ c0 =⇒
����Hn,c(x, y) 2π

�
det D2

(x,y)I
�−1/2

− 1

���� ≤ α .
If (x, y) ∈ Bδ,n, then (xn, yn) = (xn−1/4, yn−1/2 + σ2) ∈ Bδ ⊂ KI , thus for all
n ≥ n0, c ≤ c0 and (x, y) ∈ Bδ,n,����Hn,c

�
x

n1/4
,
y√
n

+ σ2

�
2π
�
det D2

(xn,yn)I
�−1/2

− 1

���� ≤ α .
Moreover (xn, yn)→ (0, σ2) thus, by continuity,�

D2
(xn,yn)I

�−1/2
−→

n→+∞

�
D2

(0,σ2)I
�−1/2

=
�
D2

(0,0)Λ
�1/2

,

whose determinant is equal to
È
σ2(µ4 − σ4). Therefore

1Bδ,n(x, y)Hn,c

�
x

n1/4
,
y√
n

+ σ2

�
−→
n→∞
c→0

�
4π2σ2(µ4 − σ4)

�−1/2
.

We proved in section 2 that, when (x, y) goes to (0, σ2),

I(x, y)− Fg(x, y) ∼ (µ4 +m4σ
4)x4

12σ8
+

(y − σ2)2

2(µ4 − σ4)
.

It follows that

n(I − Fg)
�

x

n1/4
,
y√
n

+ σ2

�
−→

n→+∞

(µ4 +m4σ
4)x4

12σ8
+

y2

2(µ4 − σ4)
.

Let us check that the integrand is dominated by an integrable function, which
is independent of n. The function

(x, y) 7−→
�
D2

(x,y)I
�−1/2
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is bounded on Bδ by some Mδ > 0. The uniform expansion of Hn,c implies that
for all (x, y) ∈ Bδ, Hn,c(x, y) ≤ Cδ for some constant Cδ > 0. Finally, it follows
from the above expansion of the proposition that, for δ > 0 small enough,

∀(x, y) ∈ Bδ G(x, y) = I(x, y)− Fg(x, y) ≥ (µ4 +m4σ
4)x4

24σ8
+

(y − σ2)2

4(µ4 − σ4)

and thus, for δ small enough, for any (x, y) ∈ R2, n ≥ n0 and c ≤ c0,

1Bδ,n(x, y) exp

�
−n(I − Fg)

�
x

n1/4
,
y√
n

+ σ2

��
Hn,c

�
x

n1/4
,
y√
n

+ σ2

�
≤ Cδ exp

�
− (µ4 +m4σ

4)x4

24σ8
− y2

4(µ4 − σ4)

�
.

and the right term is an integrable function on R2. It follows from the dominated
convergence theorem that, when n goes to +∞ and c goes to 0, then n−1/4An,c,1
converges toZ

R2

exp(iux)
√

2πσ2
È

2π(µ4 − σ4)
exp

�
− (µ4 +m4σ

4)x4

12σ8
− y2

2(µ4 − σ4)

�
dx dy .

By Fubini’s theorem, we get

An,c,1 ∼
n→∞
c→0

n1/4

√
2πσ2

Z
R

exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dx .

Now we deal with An,c,2. We will introduce an indicator function in order to
simplify the expression of An,c,2. We put α = δ/(2

√
2) and

An,c,3 =

Z
Bα

�
fn(s, t) enFg(s,t)1Bδ(s, t)− kc/n ∗

�
fne

nFg1Bδ

�
(s, t)

�
deνn,ρ(s, t) ,

An,c,4 =

Z
(Bα)c

fn(s, t) enFg(s,t)1Bδ(s, t) deνn,ρ(s, t) ,
An,c,5 =

Z
(Bα)c

kc/n ∗
�
fne

nFg1Bδ

�
(s, t) deνn,ρ(s, t) ,

so that An,c,2 = An,c,3 +An,c,4 −An,c,5. Since Bδ ⊂ ∆∗ and Fg ≤ F , we have

|An,c,4| ≤
Z

(Bα)c∩∆∗
enF deνn,ρ

and proposition 5 ensures that there exists ε1 > 0 such that, for n large enough,

An,c,4 =
n→∞
c→0

O (exp(−nε1)) .

Until now we used the standard techniques of Laplace’s method (cf. the proof
of the main result of [5]) together with an approximation of the identity. The
computation of the expansion of An,c,3 and An,c,5 is the technical part of this
proof.
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Lemma 9. If δ, c/n and cn1/4 are small enough, then

An,c,3 =
n→∞
c→0

o (En(0)) ,

An,c,5 =
n→∞
c→0

O

�Z
(Bα)c

enF (s,t) deνn,ρ(s, t)� .

Suppose that lemma 9 has been proved. Then proposition 5 ensures that there
exists ε2 > 0 such that, for n large enough,

An,c,5 =
n→∞
c→0

O (exp(−nε2)) .

We put now together the previous estimates in order to conclude. We take
c = 1/n so that c, ne−γnc−2 and cn1/4 go to 0 when n → +∞. For δ small
enough, when n goes to +∞, we have

An =
n1/4

√
2πσ2

Z
R

exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dx (1 + o(1))

+ o (En(0)) +O
�
e−nε1 + e−nε2

�
.

Finally

e−nε0 + e−nε1 + e−nε2 =
n→∞

o

�
n1/4

√
2πσ2

Z
R

exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dx

�
thus En(u) = An +Bn is equal to

n1/4

√
2πσ2

Z
R

exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dx (1 + o(1)) + o (En(0)) .

Hence

En(0) ∼ n1/4

√
2πσ2

Z
R

exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dx .

Therefore

En(0)

En(0)
−→

n→+∞

Z
R

exp

�
iux− (µ4 +m4σ

4)x4

12σ8

�
dxZ

R
exp

�
− (µ4 +m4σ

4)x4

12σ8

�
dx

.

This ends the proof of theorem 1.

We still have to prove the expansions of An,c,3 and An,c,5 stated in lemma 9.

Proof of Lemma 9. For (s, t) ∈ Bα, if we have kc/n(x− s, y − t) 6= 0, then

1− |n(x− s)/c| > 0 and 1− |n(y − t)/c| > 0

and thus, for c/n < α,

|x| ≤ |x− s|+ |s| < c

n
+

δ

2
√

2
<

δ√
2
,
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|y − σ2| ≤ |y − t|+ |t− σ2| < c

n
+

δ

2
√

2
<

δ√
2
.

Hence (x, y) ∈ Bδ and

∀(s, t) ∈ Bα kc/n(x− s, y − t) = kc/n(x− s, y − t)1Bδ(x, y) .

This implies that

1Bα ×
�
kc/n ∗

�
fne

nFg1Bδ

��
= 1Bα ×

�
kc/n ∗

�
fne

nFg
��

.

We have shown that, for c/n < α,

An,c,3 =

Z
R2

1Bα(s, t)
�
fn(s, t) enFg(s,t) − kc/n ∗

�
fne

nFg
�

(s, t)
�
deνn,ρ(s, t) .

Let (s, t) ∈ Bα. We have�
fn e

nFg − kc/n ∗
�
fne

nFg
��

(s, t)

=

Z
R2

�
fn(s, t)enFg(s,t) − fn(s− x, t− y)enFg(s−x,t−y)

�
kc/n(x, y) dx dy

= enFg(s,t)fn(s, t)

Z
R2

�
1− enΨs,t,n(cx/n,cy/n)

�
k(x, y) dx dy

= enFg(s,t)fn(s, t)

Z
[−1,1]2

�
1− enΨs,t,n(cx/n,cy/n)

�
k(x, y) dx dy,

with, for each (x, y) ∈ R2,

Ψs,t,n(x, y) = Fg(s− x, t− y)− Fg(s, t)− iuxn1/4 .

By hypothesis, the function g has a fourth derivative at 0 thus g is C1 in a
neighbourhood of 0. As a consequence Fg is C1 in a neighbourhood of (0, σ2).
Hence the mean value inequality implies that there exist r > 0 and M > 0 such
that, for any (s, t) ∈ Br and (x, y) ∈ [−1, 1]2,

|x| < r and |y| < r =⇒ |Fg(s− x, t− y)− Fg(s, t)| ≤M‖(x, y)‖ .

If δ is small enough (so that α ≤ r) and c ≤ rn then, for any (s, t) ∈ Bα and
(x, y) ∈ [−1, 1]2,���nΨs,t,n

�cx
n
,
cy

n

���� ≤Mn



�cx

n
,
cy

n

�


+ n
���u cx

n

���n1/4

≤M
√

2 c+ |u| c n1/4.

By applying the mean value inequality to the function (x, y) ∈ R2 7−→ ex+iy, we
prove that, if z ∈ C has a small enough real part, then |1− ez| ≤ 2|z|. Therefore,
if cn1/4 goes to 0, then, for any (s, t) ∈ Bα, uniformly over (x, y) ∈ [−1, 1]2,���1− enΨs,t,n(cx/n,cy/n)

��� ≤ 2M
√

2 c+ 2|u| c n1/4 = o(1) .

Hence, if δ, c/n and cn1/4 are small enough, then An,c,3 = o(En(0)) when
n→∞ and c→ 0. Next, for (s, t) ∈ R2, we have

kc/n∗
�
fne

nFg1Bδ

�
(s, t) =

Z
[−c/n,c/n]2

kc/n(x, y)
�
fne

nFg1Bδ

�
(s−x, t−y) dx dy .
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We suppose that ‖s, t− σ2‖ > δ+
√

2c/n. For |x| ≤ c/n and |y| ≤ c/n, we have
then

‖(s−x, t−y)−(0, σ2)‖ ≥ ‖s, t−σ2‖−‖x, y‖ > δ+
√

2c/n−
È

(c/n)2 + (c/n)2 > δ

so that 1Bδ(s− x, t− y) = 0 and then

kc/n ∗
�
fne

nFg1Bδ

�
(s, t) = 0 .

If c/n is small enough so that δ +
√

2c/n ≤ 2δ then

kc/n ∗
�
fne

nFg1Bδ

�
=
�
kc/n ∗

�
fne

nFg1Bδ

��
× 1B2δ

.

Hence

|An,c,5| ≤
Z

(Bα)c∩B2δ

�Z
R2

���kc/n(s− x, t− y)
�
fne

nFg1Bδ

�
(x, y)

��� dx dy� deνn,ρ(s, t)
≤
Z

(Bα)c∩B2δ

�
kc/n ∗ enFg

�
(s, t) deνn,ρ(s, t).

We note that, for δ small enough, we have on B2δ,��kc/n ∗ enFg �� ≤ enFg +
��enFg − kc/n ∗ enFg �� ≤ enF �1 + 2M

√
2c
�
,

if c/n is small enough (we use here the same argument as in the control of An,c,3,
with u = 0). Finally

An,c,5 =
n→∞
c→0

O

�Z
(Bα)c

enF (s,t) deνn,ρ(s, t)� .

This ends the proof of the lemma.

Appendix
Proof of theorem 8

The ideas of the proof of theorem 8 come from the article [11] of Anders Martin-
Löf. It relies also on the following proposition:

Proposition A.1. Let ν be a non-degenerate probability measure on Rd such
that the interior of DL is non-empty. Let AJ be the admissible domain of J .

(a) The function ∇L is a C∞-diffeomorphism from D
o

L to AJ . Moreover

AJ ⊂ DJ = {x ∈ Rd : J(x) < +∞} .

(b) Denote by λ the inverse C∞-diffeomorphism of ∇L. Then the map J is C∞

on AJ and for any x ∈ AJ ,

J(x) = 〈x, λ(x)〉 − L(λ(x)) ,

∇J(x) = (∇L)−1(x) = λ(x) and D2
xJ =

�
D2
λ(x)L

�−1
.

(c) If DL is an open subset of Rd then AJ = D
o

J = C
o

where C denotes the
convex hull of the support of ν.
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The points (a) and (b) are proved in [1] and [4] and the point (c) in [5].

We will also need the two following lemmas:

Lemma A.2. For any c > 0 and z ∈ C,Z
Rd
e〈x,z〉kc(x) dx =

dY
j=1

2(cosh(czj)− 1)

(czj)2
.

Moreover, for any compact K of R, there exists M > 0 such that

∀s ∈ R sup
u∈K

����2(cosh(u+ is)− 1)

(u+ is)2

���� ≤ M

1 + s2
.

Proof. For any ζ ∈ C\{0},Z
R
eζs max (1− |s|, 0) ds =

Z 1

−1
eζs(1− |s|) ds

=

Z 1

−1
eζs ds− 2

Z 1

0
s cosh(ζs) ds

=
2sinh(ζ)

ζ
− 2

�
sinh(ζ)

ζ
− cosh(ζ)− 1

(ζ)2

�
=

2(cosh(ζ)− 1)

ζ2
.

and this last function can be extended to a continuous function at ζ = 0. By
Fubini’s theorem, we have, for any c > 0 and z ∈ Cd,Z

Rd
e〈x,z〉kc(x) dx =

dY
j=1

1

c

Z
R
exjzj max

�
1−

���xj
c

��� , 0� dxj
=

dY
j=1

Z
R
exjczj max (1− |xj | , 0) dxj

=
dY
j=1

2(cosh(czj)− 1)

(czj)2
.

Next we define

f : (s, u) ∈ R×K 7−→ 2(1 + s2)(cosh(u+ is)− 1)

(u+ is)2
.

This is a continuous function on R ×K (at u = s = 0 it can be extended to a
continuous function by setting f(0, 0) = 1). Thus f is bounded over the compact
set [−1, 1]×K. Moreover, if |s| > 1 and u ∈ K, we have

|f(s, u)| = 2(1 + s2)

u2 + s2
|cosh(u+ is)− 1| ≤ 2

�
1

s2
+ 1

�
(cosh(u) + 1)

≤ 4 sup
u∈K

(cosh(u) + 1) < +∞.

Hence f is bounded over R×K by some constant M > 0. This ends the proof
of the lemma.
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Lemma A.3 (Uniform dominated convergence theorem). Let X be a separable
metric space and let (Ω,F , µ) be a measurable space. Let f and fn, n ≥ 1, be
real or complex-valued measurable functions defined on X × Ω. Suppose that,
for any ω ∈ Ω, the functions x 7−→ f(x, ω) and x 7−→ fn(x, ω), n ∈ N, are
continuous on X and that

sup
x∈X
|fn(x, ω)− f(x, ω)| −→

n→∞
0 .

Suppose also that there exists a non-negative and integrable function g on Ω
such that

∀n ∈ N ∀x ∈ X ∀ω ∈ Ω |fn(x, ω)| ≤ g(ω) .

Then for any x ∈ X , the function ω 7−→ f(x, ω) is integrable and

sup
x∈X

����Z
Ω
fn(x, ω) dµ(ω)−

Z
Ω
f(x, ω) dµ(ω)

���� −→n→∞ 0 .

Proof. We adapt the proof of the classical dominated convergence theorem
in [12]. Sending n to +∞ in the domination inequality, we get

∀(x, ω) ∈ X × Ω |f(x, ω)| ≤ g(ω) .

This shows that ω 7−→ f(x, ω) is integrable. For any n ∈ N, we set

hn : ω 7−→ sup
x∈X
|fn(x, ω)− f(x, ω)| .

For all n ∈ N and ω ∈ Ω, the function x ∈ X 7−→ |fn(x, ω) − f(x, ω)| is con-
tinuous and, since X is separable, its supremum is equal to its supremum on
a countable dense subset of X . Therefore hn is a measurable function. More-
over (2g − hn)n∈N is a sequence of non-negative functions whose limit is the
function 2g. Fatou’s lemma implies thatZ

Ω
2g dµ =

Z
Ω

liminf
n→+∞

(2g − hn) dµ ≤ liminf
n→+∞

Z
Ω

(2g − hn) dµ

=

Z
Ω

2g dµ− limsup
n→+∞

Z
Ω
hn dµ.

Since g is integrable, we get that

limsup
n→+∞

Z
Ω
hn dµ ≤ 0.

Hence
R

Ω hn dµ→ 0 since for any n ∈ N, hn is a non-negative function. Finally

sup
x∈X

����Z
Ω
fn(x, ω) dµ(ω)−

Z
Ω
f(x, ω) dµ(ω)

���� ≤ sup
x∈X

Z
Ω
|fn(x, ω)− f(x, ω)| dµ(ω)

≤
Z

Ω
hn dµ −→

n→∞
0.

and the lemma is proved.
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Proof of theorem 8. Lemma A.2 implies that

∀s ∈ Rd bkc(s) =
dY
j=1

2(1− cos(csj))

(csj)2

and, for any u ∈ Rd, the function x 7−→ e〈u,x〉kc(x) has the Fourier transform

s ∈ Rd 7−→
dY
j=1

2(cosh(c(uj + isj))− 1)

(c(uj + isj))2
,

which can be rewritten as

s ∈ Rd 7−→
dY
j=1

2(1− cos(c(sj − iuj)))
(c(sj − iuj))2

= bkc(s− iu) .

This is an integrable function, thus by the Fourier inversion formula (see [12]),
the Fourier transform of s 7−→ (2π)−d bkc(s− iu) is y 7−→ e−〈u,y〉kc(y). Let
x ∈KJ and u ∈ Rd. A straightforward computation yields us that the Fourier
transform of

s 7−→ 1

(2π)d
e−n〈x,u+is〉bkc(s− iu)

is the function y 7−→ e−〈u,y〉kc(y − nx). We have then

ϕn,c(x) =

Z
Rd
e−〈u,y〉kc(y − nx) e〈u,y〉 dν∗n(y)

=

Z
Rd

�Z
Rd
ei〈s,y〉

e−n〈x,u+is〉bkc(s− iu)

(2π)d
ds

�
e〈u,y〉 dν∗n(y).

By Fubini’s theorem,

ϕn,c(x) =

Z
Rd

e−n〈x,u+is〉bkc(s− iu)

(2π)d

�Z
Rd
ei〈s,y〉e〈u,y〉 dν∗n(y)

�
ds

=

Z
Rd

e−n〈x,u+is〉bkc(s− iu)

(2π)d
M(u+ is)n ds.

However x ∈ AJ thus, if λ denotes the inverse function of ∇L, then theorem A.1
states that

J(x) = 〈λ(x), x〉 − lnM(λ(x)) .

Replacing u by λ(x) in the previous integral, we get

ϕn,c(x) = e−nJ(x)

Z
Rd
e−in〈x,s〉

M(λ(x) + is)n

M(λ(x))n
bkc(s− iλ(x))

ds

(2π)d
.

We denote by µx the measure on Rd such that

dµx(y) =
e〈x+y,λ(x)〉

M(λ(x))
dν(y + x) .

Its Fourier transform is the function

s 7−→ e−i〈x,s〉
M(λ(x) + is)

M(λ(x))
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so that

ϕn,c(x) = e−nJ(x)

Z
Rd

(bµx(s))
n bkc(s− iλ(x))

ds

(2π)d
.

For any x ∈ KJ , the mean of µx isZ
Rd
y
e〈x+y,λ(x)〉

expM(λ(x))
dν(y + x) =

Z
Rd

(z − x)
e〈z,λ(x)〉

M(λ(x))
dν(z) = ∇L(λ(x))− x = 0

and its covariance matrix is Γx = D2
λ(x)L since for 1 ≤ i, j ≤ d and s ∈ DL,

(Γx)i,j =

R
Rd yiyje

〈λ(x),y+x〉 dν(y + x)

M(λ(x))
=

R
Rd(zi − xi)(zj − xj)e〈λ(x),z〉 dν(z)

M(λ(x))

=

R
Rd zizje

〈λ(x),z〉 dν(z)

M(λ(x))
− xixj =

∂2L

∂sisj
(λ(x)).

When t→ 0, uniformly over x ∈ KJ , we have the expansion

bµx(t) = 1− 1

2
〈Γxt, t〉+ o(‖t‖2) .

Indeed the function (x, t) 7−→ bµx(t) is C∞ on AJ×Rd (by proposition A.1), thus
the Taylor-Lagrange formula guarantees that the remainder term is uniformly
controlled over x ∈ KJ . Therefore, for any t ∈ Rd, uniformly over x ∈ KJ ,

bµx � t√
n

�n
−→
n→∞

exp

�
−1

2
〈Γxt, t〉

�
.

Moreover, for any c > 0, n ≥ 1, t ∈ Rd and x ∈ KJ ,

bkc � t√
n
− iλ(x)

�
=

Z
Rd
fc,n(x, s) ds ,

with

∀s ∈ Rd fc,n(x, s) = exp

�
i
c√
n
〈s, t〉+ c〈s, λ(x)〉

�
k(s) .

We have

sup
x∈KJ

|fc,n(x, s)− k(s)| = k(s) sup
x∈KJ

����exp

�
i
c√
n
〈s, t〉+ c〈s, λ(x)〉

�
− 1

���� −→n→+∞
c→0

0

and, for all s ∈ Rd, x ∈ KI , c ≤ 1 and n ≥ 1,

|fc,n(x, s)| ≤ k(s) sup
x∈KI

t∈[−1,1]d

exp 〈t, λ(x)〉 .

The term on the right defines an integrable function on Rd since k(s) = 0 for any
s /∈ [−1, 1]d. Thus the uniform dominated convergence theorem (lemma A.3)
states that, for any t ∈ Rd, uniformly over x ∈ KJ ,

bkc � t√
n
− iλ(x)

�
−→

n→+∞
c→0

1 .
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The functions x 7−→ bµx(t) and x 7−→ exp (−〈Γxt, t〉/2), t ∈ Rd, are continuous
on KJ . In order to apply the dominated convergence theorem (the uniform
variant), we need to get a uniform domination of the sequence of functions.
For x ∈ AJ , Γx is a positive definite symmetric matrix thus εx, its smallest
eigenvalue, is positive. The largest eigenvalue of the inverse of Γx is ε−1

x . There-
fore, for any x ∈ AJ ,

εx =
�
max {α : α eigenvalue of Γ−1

x }
�−1

=

�
sup
y 6=0

〈Γ−1
x y,Γ−1

x y〉
〈y, y〉

�−1/2

.

The term on the right is the inverse of the operator norm of the linear application
associated to the matrix Γ−1

x . Moreover x 7−→ Γx = D2
λ(x)L is continuous on AJ

thus the function x 7−→ εx is continuous. Let us denote by ε0 its minimum
on KJ . The compactness of KJ ensures that ε0 > 0. The previous expansion
implies that there exists δ > 0 such that

∀(t, x) ∈ B(0, δ)×KJ |bµx(t)| ≤ 1− 1

2

D�
Γx −

ε0

2
Id

�
t, t
E
.

The spectral theorem for real symmetric matrices yields that, for any x ∈ KJ ,
the matrix Γx − ε0Id is positive symmetric. Thus

∀t ∈ Rd
D�

Γx −
ε0

2
Id

�
t, t
E
− ε0

2
‖t‖2 = 〈(Γx − ε0Id)t, t〉 ≥ 0 .

It follows that

∀(t, x) ∈ B(0, δ)×KJ |bµx(t)| ≤ 1− ε0

4
‖t‖2 .

Since 1− y ≤ e−y for all y ≥ 0, we get

∀n ≥ 1 ∀(t, x) ∈ B(0, δ
√
n)×KJ

����bµx � t√
n

�����n ≤ exp
�
−ε0

4
‖t‖2

�
.

The right term is integrable and does not depend on x ∈ KJ and n. Moreoverbkc(t) = bk(ct) for t ∈ R, and by lemma A.2, the function bkc(·/√n − iλ(x)) is
bounded uniformly over x ∈ KJ , c > 0 and n ≥ 1. The uniform dominated
convergence theorem (lemma A.3) implies that, uniformly over x ∈ KJ ,Z

‖t‖<δ
√
n
bµx � t√

n

�n bkc � t√
n
− iλ(x)

�
dt

−→
n→+∞
c→0

Z
Rd

exp

�
−1

2

¬�
D2
λ(x)L

�
t, t
¶�

dt .

Moreover this second integral is equal to (2π)d/2 (det Γx)
−1/2

and proposition
A.1 guarantees that, for x ∈ AJ , D2

λ(x)L is the inverse matrix of D2
xJ . Therefore,

when n→∞ and c→ 0, uniformly over x ∈ KJ ,Z
‖t‖<δ

bµx(t)n bkc(s− iλ(x)) ds = n−d/2
Z
‖t‖<δ

√
n
bµx � t√

n

�n bkc � t√
n
− iλ(x)

�
dt

∼
�

2π

n

�d/2 �
det D2

xJ
�1/2

.
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Let us consider now the remaining integralZ
‖t‖≥δ

bµx(t)n bkc(s− iλ(x)) ds ,

the rest of the integral. The measure ν satisfies the Cramér condition and ν is
absolutely continuous with respect to µx. By lemma 4 of [2], we get that µx
also satisfies the Cramér condition:

sup
‖s‖≥δ

|bµx(s)| < 1.

Therefore, by the compactness of KJ ,

sup
x∈KJ

sup
‖s‖≥δ

|bµx(s)| = e−γ < 1 ,

for some γ > 0. As a consequence

sup
x∈KJ

����Z
‖s‖≥δ

bµx(s)n bkc(s− iλ(x)) ds

���� ≤ e−nγ Z
Rd

sup
x∈KJ

bkc(s− iλ(x)) ds .

By lemma A.2, we haveZ
Rd

sup
x∈KJ

bkc(s− iλ(x)) ds = O

 
dY
j=1

Z
Rd

1

1 + (csj)2
dsj

!
= O

�
1

cd

�
.

Finally, when n→ +∞ and c→ 0,

ϕn,c(x) =
e−nJ(x)

(2π)d

��
2π

n

�d/2 �
det D2

xJ
�1/2

(1 + o(1)) +O
�
e−nγc−d

��
= (2πn)−d/2

�
det D2

xJ
�1/2

e−nJ(x)
�
1 + o(1) +O

�
nd/2e−γnc−d

��
.

The boundedness of the function x 7−→
�
det D2

xJ
�1/2

on KJ and the previous
study show us that this expansion is uniform over x ∈ KJ . This ends the proof
of theorem 8.
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