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Abstract

In [1], we built and studied a Curie-Weiss model exhibiting self-organized
criticality : it is a model with a self-interaction leading to fluctuations of
order n*/* and a limiting law proportional to exp(—x*/12). In this paper
we modify our model in order to « kill the term z* » and to obtain a
self-interaction leading to fluctuations of order n°/® and a limiting law
C exp(—Xz®) dz, for suitable positive constants C' and .
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1 Introduction

This paper is a sequel to the articles [1] and [4], in which we built and studied a
Curie-Weiss model exhibiting self-organized criticality. It was the model given
by the distribution

1 Xp(l(x1+~~~+zn)2>

Z °

2 x% 4+t a2 ]l{z%+"'+f%,>0} Hdp(l‘i),

=1

where Z, is a renormalisation factor. We proved rigorously that this model
exhibits a simple phenomenon of self-organized criticality : if we build the model
with a symmetric probability p on R satisfying some integrability conditions,
then the sum S,, of the random variables behaves as in the critical generalized
Ising Curie-Weiss model (see [3]). More precisely, the fluctuations of \S,, are of
order n®/* and the limiting law is

4 1/4 1 —1 84
- (- - .
(3) (4) eXp( 12> ds
The purpose of this article is to « kill the term z* ». We modify the distribu-

tion we studied in [1] and [4] in order to obtain a self-interaction leading to
fluctuations of order n°/¢ and a limiting law

C exp(—\2®) dz,

where C' and \ are some positive constants.

To this end, we first focus on the reasons why the fluctuations of S;, in the model
we studied in [1] are of order n®/%. The interacting term of the model is

F(ml+...+zn’x%+...+zi>’

where F(x,y) = 22/(2y) for (z,y) € Rx ]0,+oo[. Let I be the rate function for
the large deviations of

1 n
*Z(XkHX]z)v nzla
nk*l

where (Xi)r>1 is a sequence of independent random variables with common
law p. By analysing the proofs in [1], we can see that the fluctuations of S,
are of order n3/* because, in the expansion of the function I — F around its
minimum, the first non-vanishing term with the variable z (corresponding to
S,,/n) appears in the fourth order. More precisely, if 0% denotes the variance of
p and ju4 its fourth moment, this term is pgz?/(120%).

As a consequence, in order to « kill the term z* », we are going to modify

the interacting function F' of our model into some function H so that, in the
expansion of the function I — H around its minimum, the first term with the
variable x only appears in the sixth order. We could consider

H(l‘,y)ZF(l‘,y)—i—i



However we want to build a self-interaction, thus we estimate 4 by (2 +---+
) /n (as we estimated o2 by (22 + --- + x2)/n in order to build the model
in [1]). That is why the interacting term we want to consider is

H(I1+...+1‘n’x%+...+zi’x%+...+zﬁ>

L@t taa)® 1 (it o) (@t +a.)
2 aittan 12 (f + - +af)t

We observe with computer simulations that, with this interacting term, for se-
veral probability measures p, the fluctuations of the sum S, are of order n®/6
and the limiting law is proportional to exp(—Axz%) for some A > 0.

In sections 2 and 3 we initiate the proof of a fluctuations theorem for S,, with
this interacting function H. We use the same techniques as in [1] : we compute
the expansion of I, — H where 1, is the rate function for the large deviations of

1 n
= (Xx, X, X3, n>1.
k=1

3

Unfortunately we encountered several problems with the rest of the proof : the
techniques we used in [1] have not been successful and we had to modify H. Our
investigations to build an interacting function H leading to fluctuations of order
n®/6 and amenable to a mathematical analysis led us to consider the following
model :

The model. Let p be a probability measure on R which is not the Dirac mass
at 0. Let H be the function given by

x2 1 zatyd

v(zayvz) ERXR\{O} x R H(xasz) 2 12y —|—.’L’10+Zl‘4

For any n > 1, we denote

ZHnZ/nexp(H(m-l-“-—&-xn,x%+~--+xi,x‘f+---+xi))

s

X Lpazp g0z >0 H dp(z;) -
i=1

We consider (X})1<k<n an infinite triangular array of real-valued random va-
riables such that, for alln > 1, (X} ..., X™) has the law [ig n,,, which is the
distribution with density

exp (H (01 + 4 m o+t o oo +28)) Tatsagoo)

Hmn
with respect to p®™. We denote

Sp=X0 4+ X T = (X)) 4 +(X))? and U, = (X)) 4 +(X)*%

This model is well-defined : Zg ,, is finite for any n > 1. Indeed

22 zat x? 22\? 2
RxR R H < — =5 T
V(z,y,2) € R x R\{0} x (@ 9.2) S 5+ o = gy * ( y ) 12y?



We have

n

2 n
i=1

i=1
and, by convexity of the function ¢t — 2, we get
n2

Vn >1 1§ZH,7LSeXp<n+

We state next our main result :

Theorem 1. Let p be a symmetric probability measure on R whose support
contains at least five points and such that

Jwy > 0 / v dp(z) < +o00.
R

We denote by o2 the variance of p, by u4 its fourth moment, by ug its sizth
moment and by ps its eighth moment. We assume that

5us > 20° 1 -

Then, under [iprn,ps (Sn/n, Tn/n,Us/n) converges in probability to (0,02, puy).

Moreover, if p admits a bounded density with respect to the Lebesgue measure
on R, then, under fif . p,

2 1/6 1/6 -1 6
Hi 20 Sn_ c <§> <1> _s
<a2 5 ) ol e V7)) Tg) P 1) %

In section 5.b), we will actually prove this theorem for more general interacting
functions H and more general probability measures p.

After giving some preliminaries, simulations and notations in section 2, we study
the smoothness of I, and we compute its expansion around (0,02, ) in sec-
tion 3. Next, in section 4, we explain the first problems we encounter and we
investigate how to build an interacting term which is amenable to a mathemati-
cal analysis. Finally, in section 5, we give the proof of (an extended version of)
theorem 1. We end this paper by a discussion about a model with fluctuations
of order n1=1/2k for k > 4.



2 Preliminaries

We denote by F' the function defined by

72

We recall the following proposition, which is proved in section 5 of [1] :

Proposition 2. Let p be a symmetric probability measure on R with variance
0% > 0 such that the function

A (u,v) € R? — ln/ euztvz’ dp(z)
R

is finite in the neighbourhood of (0,0). We define I by

Vo) €B2  I(wy)= sup (urtoy— Aduwv) .
(u,v)ER2

Then the function I — F has a unique minimum on R x R\{0} at (0,02), with
(I — F)(0,02) = 0. Moreover, if the support of p contains at least three points
and if ug denotes the fourth moment of p, then, when (z,y) goes to (0,02),
praz’ + (y—o?)!
1208 2(pg —ot)

I(x,y)—F(x,y) ~

This is the starting point for the construction of an interaction term. Indeed, as
we explained in the introduction, in order to « kill the term z* », it is enough
to add some function R to F so that the term pusx*/(120%) vanishes from the
above expansion and so that

(y —o?)*
2(pa —ot)’

for some A > 0. However we want to build a self-interaction, thus we have to
estimate uy by (7 + -+ + z1)/n (as we estimated o2 by (2 + -+ 22)/n in
order to build our model in [1]). Hence it seems natural to consider H = F + R,
with

2.174

R:(z,y,2z) e RxR\{0} xR +— 1257
and this leads us to study the rate function I, of the large deviations for 7, ,,
the law of (S, /n,T,,/n,U,/n) under p®™.

For n > 1 and H = F' + R, let us consider S, = X' 4+ --- + X!, where the law
of (X7,...,X}?) has the density

exp (H (214 +an, 2f +- +22, 2f + - +2))

(xla ) L ) ZH,n
with respect to p®™. We made computer simulations of this model which support
us in the choice of H = F' 4+ R. We used Metropolis-within-Gibbs algorithms
(cf. section 4 of [5]) and obtain :



IN BLUE, THE RENORMALIZED HISTOGRAM OF 6,17 x 10!! SIMULATIONS OF
S, /n°/%, FOR n = 10000 AND p HAVING A DENSITY PROPORTIONAL TO
x +— exp(—x?). IN RED, THE GRAPH OF THE DENSITY FUNCTION

81\ /6 /1\7! 26
— | = (= -— .
v (2> (6) eXp( 18)
We end this section by giving some notations. For a symmetric probability
measure p on R which is not the Dirac mass at 0, we denote by 1,, the law

of (Z,7?%,Z*) when Z is a random variable with distribution p. We define the
Log-Laplace A, of 1;, by

Y(u,v,w) € R? A (u,v,w) = ln/Re“ZJ“’ZZ““4 dp(z) .

If A, is finite in a neighbourhood of (0,0,0) then the Cramér theorem (cf. [2])
states that (7, ,)n>1 satisfies the large deviations principle with speed n, go-
verned by the Cramér transform I of y,, defined by

V(z,y,2) € R3 L(z,y,2)= sup (zu+yv+z2w— A (u,v,w)) .
(u,v,w)€ER3

We denote by Dy, and Dy, the domains of R?® where the functions A, et I, are
finite. We introduce next the subsets of R3

0 ={(z,y,2) €ER®:2? <y, y* < 2} and 6 =0nN (R xR\{0} xR).

By convexity, we have that 1, ,(©) = 1. We get that, under f,, ,, the distribu-
tion of (Sy,/n,Ty/n,Up/n) is

7 exp (H(nz,ny,nz)) Lo (z,y, z) d, ,(x,y,2) .



(hm,hm,h)

TWO VIEWS OF THE SET OF THE POINTS (z,y,2) € 00 SUCH THAT z < h.

{ 114’h112 )
\

(0,0,0)

We will proceed as we did in the article [1], i.e., we will study, for any n > 1,
the function

1
G (z,y,2) — L(z,y,2) — —H(nx,ny,nz).
n

The Cramér transform I, has a unique minimum at (0,02, 14) and the method
we used in the section 5.b) of [1] allows us to compute the expansion of I, around
its minimum.

In order to apply the Laplace’s method, as in the section 7 of [1], we want to
build H so that G,, also has a unique minimum at (0, 02, yy4) for any n > 1, and
so that its expansion around this minimum has the desired form :

Axﬁ +q(y—0'2,2—/.1/4),

with A > 0 and ¢ a positive definite quadratic form on R2.



3 Expansion of I, around (0, 0?2, 114)

Let p be a symmetric probability measure on R with variance o2 > 0 and such
that (0,0,0) € Dy,. In this section, we first study the smoothness of I,, then we
compute its expansion around its minimum (0, 02, p14). In the last subsection we
give the expansion of I, — F — R around (0,02, j14).

a) Smoothness of [,

The function A, is finite in a neighbourhood of (0,0,0) thus each moment of p
is finite and the covariance matrix of 1, is

o? 0 0
0  ps—o*  pe—ouy
0 pe—0’pa g — pif

Lemma 3. We assume that p is a symmetric probability measure on R whose
support contains at least five points. Then the support of v,, is not included in
a hyperplane of R? ans thus

(s — o) (s — p3) # (p6 — 0% pa)? .

Proof. Since p is symmetric, its support contains the points a, —a, b and —b for
some a # b. Therefore the support of 1,, contains the points

(a,a,a*), (—a,a?a"), (b,b*b*) and (—=b,b% bt).
We observe that these four points belong to the same plane P whose equation is
—(@®>+ )y +2z+ad’? =0.
If ¢ is a fifth point in the support of p then
—(a®+ 1)+t +a*h? = (2 —a?)(? —b*) £0.

Thus the point (c,c?, ¢?), which is in the support of 1,,, is not included in P.
Hence the support of 1, is not included in a hyperplane of R®. As a consequence
the covariance matrix of 1,, is invertible (see section IIL.5 of [14] for a proof),

Le., (s — 0*)(us — p3) # (e — 0% pa)?. O
We assume next that the support of p contains at least five points. The previous
lemma and the proposition A.4 L of [1] imply that VA, is a C*°-diffeomorphism
from Dy, to Aj,, the admissible domain of 1,. Moreover A;, C ©" and

(0,02, 114) = VA.(0,0,0) € VA (Dy,) = A, .

The function I, is C* on Ay, and, if (z,y, 2) — (u(x,y, 2),v(x,y, 2), w(z,y, 2))
denotes the inverse function of VA,, then, for any (z,y,z2) € Ay,

I.(%Z/: Z) = xu(m,y7 Z) + yv(m,y7 Z) + Zw(x7y7 Z)
fA,(u(x,y,z),v(x,y,z),w(x,y,z)),

1. Actually it is proposition 10 of the ARXIV version of [1].



VIL(z,y,2) = (VA) (2,y,2) = (u(z,y,2),v(z,y, 2), w(z,y, 2)) ,

—1
2 _ 2
Doy k= (Dlutemopsruran?) -

In order to compute the derivatives of the previous terms, as in section 5.b) of [1],
we introduce the functions f; defined by

/ xjeuw-i-vxz—i-ww‘l dp(x)
R

fj(U,U,U}) = 5 4
‘/Reuz+vz +wzx dp(.]?)

The functions f;, j € N, are C* on l%A. and they verify the following properties:
* fo is the identity function on R3 and
oA oA OA

h=% »=% =%
* For all j € N, £;(0,0,0) = p; is the j-th moment of p. It is null if j is odd,
since p is symmetric. Moreover, for any j € N,

af; af;
ai‘ijzfj—‘rl*fjfla 87{}'3
For any (u,v,w) € ﬁA., we have
fo= 17 fs—fifa fs— fah
DYyvyh =\ fs—fifo fa—f3 fo—fafo ] (w,0,w).
fs—fafr fo—fafs fs—fF

[

Vi €N V(u,v,w) € D,

and fa

8 .
= fir2 — fife and T{;:fj+4*fjf4~

We define

g=(f2— D) (fa— ) (fs — f1) +2(fs — f1.f2)(fo — faf2)(fs — faf1)
— (fa = 13)(fs = faf1)? = (fa = [D)(fo — faf2)? = (fs — [ (fs — f1.f2)*.

o
This is a function which is positive on Dy, . Therefore

V(.'I}, Y, Z) € AI. D(2aj’y’z) . — K(’LL(LL', Y, Z)a U(.’E, Y, Z)a UJ(Z’, Y, Z)) )

where K is a function from R? to S3(R), the set of the symmetric matrices of
size 3, such that

(fa = f3)(fs = f7) = (fo — faf2)®

K= P ,
s = 2= 1D Us = 12) = (fs = fu)1)?
2,2 g ,
Koo L= D= f3) = (fs = fifo)?
: p ;
Kio= Koy — (fs — faf1)(fo — f4f2)g— (fs — [1f2)(fs — f3) 7
Kis=Ks1 = (fs = f1.f2)(fs — f4f2)g— (fs = faf1)(fa — f3) 7
Koy = Ky = (fs = fufo)(fs — f4f1)g (f2 = 1) (fo — faf2) '



b) Computation of the terms of the expansion of I,

Notice that g(0,0,0) = ac? with

a = (ps— o) (us — p3) = (e — o*pa)® > 0.
We have
1/02 0 0
DYyorpnl=1 0 (us—pd)/a  (pao®— pe)/a
(0,02, 114) 9 f
0 (mao® —pg)/a  (pa—0%)/a
Let ¢ be the positive definite quadratic form on R? given by
4

_ 2 _ _
V(y,2) €ER®  q(y,2) = 2 v P R (T 2
2a a 2a

Taylor formula implies that, at the order 6, the expansion of I, in the neighbou-
rhood of (0,02, 1) is

2

I-(xvya ) 2% 52 +q( 0'2,2,’—/,[,4)
1 oatB+ ) ,
. o _ 8 B .
" Z alfly! 3xaay5627(0’0 sha) 2% (y — 07)7 (2 — pa)
(a,8,7)ET
T ollle,y — 0% 2 — uall®).
with

T={(.8,7) N’ ra+B+7€{34,5,6}}
Thus we have to compute the terms

fotP T

2
Dandyroz )

for (o, 8,7v) € T. In order to optimize the computations, we will first determine
the terms of the expansion of I, which are negligible compared to the term
AzS +q(y — 02,2 — pyg) with A > 0.

i) The non-negligible terms

Lemma 4. Let A > 0 and q be a positive definite quadratic form on R2. Then,
in a neighboorhood of (0,0,0),

2,y,2]|° = O(Az° + q(y, 2)) -
Moreover, for any (a, B,7) € N2, we have

B
o %Pz
—+B+y>2= lim —"" =0
3 Bt (2,y,2)—(0,0,0) Axb + ¢(y, 2)

10



Proof. For any (z,y,z) € R3\{(0,0,0)}, there exists a unique (r, 8, ) which
belongs to 0, +00[x [0, 27[x [0, 7] and satisfies

(23 = rsing,

y = 1 cosb cosp
z = rsinf cosy .

Thus
Az’ 4 q(y, z) = Ar? sin?p + 12 cos?p g(cosh, sind) .

However the set { (cosf,sind) : 6 € [0, 27[} is compact in R? and the continuous
function q is positive on this set. As a consequence ¢ has a minimum m > 0 and
a maximum M > m. Hence

min(A, m)r* < Az® 4+ q(y, z) < max(A,m)r?.

We get that
. 3 3
lz,9,21° (2®+9° + 22)3 (7"2/381n2/3<p + ?"2(;052@) - (1 i 7A/g)
Az +q(y,z)  AxS+q(y,z) ~ min(A,m)r? ~ min(4,m)

This is a bounded quantity when r tends to 0. Next

| sing|*/3|r cosf cosp|P|r sinf cosp| _ O(e/3i-2y

xyP 27
‘AwG +a(y,z)

min(4, m) r?
Since the convergence of (x,y, z) to (0,0,0) is equivalent to the convergence of
r to 0, the lemma is proved. O
This lemma states that the terms 2%y”27, (o, 3,v) € T, which are not negligible
at (0,02, pg) compared to Ax® + q(y — 02,2 — p4), are such that

o

3T B+v< 2.

Thus, these terms are those for which (a,f,7v) is (2,1,0), (2,0,1), (3,0,0),
(3,1,0), (3,0,1), (4,0,0), (5,0,0) or (6,0,0). Let us compute the coefficients
of these terms in the expansion of I,. We denote
ki = (fa— ) (fs = 1) — (fo — faf2)?,
ke = (fs = faf1)(fo — faf2) = (fs — frfa)(fs — f),
k3 = (f3 = fifo)(fo — fafo) = (fs — faf1)(fa — f3).

ii) The terms at the third order

Let us start with the terms at third order which might be non-negligible com-
pared to Az% + q(y — 02,2 — p4) :

>*L 9 O*L\ 0K s(u,v,w)
0x20y Oz \0zdy) Ox
_ 8u 3K1,2 81} 6K172 8w 8K1,2

—axx B (u,v,w)—l—%x 5y (u,v,w)—F%x 5

(u,v,w).

11



We have
ov %1, 8?1,

ow
il 2 e 2 _Jv 2
8x(0’0 s ) = 8x8y(0’0 s pa) =0 ava(O,U 1) 3x(0,0 s Ha)
ou %1, 1
830(0’0 HU/4) ox 2(00 aM4) 0_27
thus
83.[ - 8k2 kQ(O 0 0) 89 >
By 7 1) = 3 (ooo (0,0.0) = 226,00 u > > ¥

a?
We have k2(0,0,0) = k3(0,0,0) = 0 and ¢(0,0,0) = 0%k (0,0,0) with

k1(0,0,0) = pgpa — pf — pso — pg + 2p640° .

Using the properties of the functions f;, i € N, for computing their partial
derivatives, we get
Oks

52(0,0,0) = —k1(0,0,0)..

Hence )
83]- 2 7k1(07070) 1

—~ = 0 S bt ot ot A
8x28y( 07 ) o4k1(0,0,0) ot
We compute next that

0k Oks
8(000) 8(000) 0.
This implies that
031, 01,

33(00-7/1'4> a 29, (00—7/1'4)_0-

But we already knew that the third partial derivative of I, with respect to = is
null at (0,02, py) since I, is even in its first variable.

We have shown that

1
R (L o am=eLo
alBly! 3x°‘8y58;7(0’02’u4):{ 0 if (a,8,7)=(201),
L 0 it (a,8,7) = (3,0,0)

iili) The terms at the fourth order

Let us focus now on the non-negligible terms at the fourth order :

04l B 02K 1(u,v,w) B 0%u 0K 4 0%v 0K

oA = = gy (W) o (u v, w)
(2;;} 8811; (u, v,w) + (g;)z 82;5;11 (u, v, w) + <gi)2 8281;1’1 (u, v, w)
*(?:)282531(“» ow) + 208 20 TH L

12



We have

0%y 03I 931, 9w
o2 (0,02, ua) = 02 >(0,0%,pa) =0 = m(07027ﬂ4) = W(070—27u4)7

9*v %1, 1
or 2(0 g ,#4) M(ngz,ﬂﬁ = Tt
As a consequence
64_[ 1 82K1 1 ]- aKl 1

a4(0cr,u4) T ouz (0,0,0) — g 81)’ (0,0,0).

We have

ou2 g ou:  ¢20u ou  grou? g

PKiy 10k 209 0k k109 | 2k <ag>2
ou/) ’

and the properties of the functions f;, i € N, for computing their partial deri-
vatives give us

dg

%(0, 0,0)=0,
so that
82[(171 1 262k1 629
Ou2 (07070) - 0_4]{71(0’0’0) (U ou2 (07050) - 87.142(0’0’0)> .
Moreover
8K1’1 1 8k k1<0 O )79
o L0k @ )
= 715,(0,0,0) ( By (00,0)=5,(0.0.0) ).

We compute that

Ok1 0%kq 2 4 6
50 —(0,0,0) = DuZ (0,0,0) = —puspe + H1opha — 2Ugpa0” — 100" + 3ugo

— pepiy + 3uio” 4+ 4pgo? — 6pepact .
After factorising by k1(0,0,0), we get that this quantity is equal to
—30°k1(0,0,0) + p1o(pa — 0*) + ps(pac”® — pg) + pe(peo” — 1) -

We compute similarly that

0%g
502(0,0,0) = = (pa + 40M)k1 (0,0,0) + o, (1)
89 4 2
where 1) = p10(pa — 0 ) + pg(pac® — pe) + pio(po® — p3). Finally
o1, L 52 1) = (=30 + pg + 40" + 30* + py — 40*)k1(0,0,0) 2p1a
i 75%1(0,0,0) T

13



We have likewise

841. aQK w, v, w
M(O’()-Q“th) - %(07027/’44)
1 9?K» 1 0K
— T2 0,0.0) = = Z2E2(0,0.0)
_ 1 26 kz ko 0? g 8k2 ko (9g
~ 0%k1(0,0,0) <U o2 Ky ou? — 0’ s —|— k9o (0,0,0)
and
041, 1 282k3 ks 9%g LOks ks g
833‘38 (0 g 7#4) 0'8]61(07070) (U ou? o kflﬁ — 0 % + ]ﬁ@l}) (0,0,0)

But k2(0,0,0) = k5(0,0,0) = 0 and we compute that

0%ks Ok 9%ks Oks
82(000) 8(000) 82(000) 8(000) 0.
Hence we have shown that

( pga* .
| gethrg | ot i (080 =(4,0,0),

. 2 _ .
!Byl 9zedyBa (0,07, pa) = { 0 it (a,8,7)=(,1,0),
L 0 if (a.8,9)=(301).

iv) The terms at the fifth and sixth orders

We still have to prove that

1 0°1, 1 051,

0, =0 d A .
o095 00 i) =0 and - p e (0,0% ) = A >0
By symmetry of I, at its first variable, we obtain immediately that its fifth
partial derivative with respect to x is null. Let us determine its sixth partial

derivative with respect to x. We notice first that

D3u oI, 24
83(00—"u4) 64(007:u4) 84’

93w 04, O*, 3w
@(030—27#’4) o1 38 (070 7:“‘4) 0= m(()szv:u‘l) = %(an—z,ﬂ4)a

0*u 0°1,
84(007M4) 85(OU7M4)_0

Thus we know the partial derivatives with respect to = at (0,02, uy) of the
functions u, v, and w until the third order. We write then the sixth partial
derivative I, with respect to x, taken at (0,02, u4) and we only keep the terms
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which do not vanish because of the symmetries:

%1, Ky (u,v,w 0% oK
(0,07 1) = %(0,02,,@ 200,07 ) 8“(070,0)

o*w 0K 0*v 0*K
a4<00,u4>61’1(0,0,0>+3(62<00,u4>> oo (0,0,0)

+

ou 84 83u ou 82[(1’1
+<8 (00,,114)) Sl (OOO)—i—48 (00,,114)8 (0,02, us) D02 (0,0,0)
ou, )28% PK
+6<%(0,a,u4) 0,07 )5 51 (0,0,0).

We computed above that

0K 1 . U4*H4 32K1,1 o M4+U4
50 (0,0,0) = and (0,0,0) = e

ot Ou?
As a consequence

861 3 82K1 1 8/14(#4 +0’4> 6 63K1}1
16 5 (00 ,,u4) o8 o2 —goz (00,00 + ol o8 Qu2dv (0,0,0)
1 0% Kl 1 0t ot — Ha o*w 2 aKlvl
+08 Sl (0,0,0)+ o 4(0 o 7M4) g +8x4(070 s ) B (0,0,0). (3)
We have
o*v 83K172(u,v,w) 3 0K 2
97 ——(0,0%, a) = T(O 0%, ) = 97 -—5(0,0 M@W(an’o)

ou 2 83K172 ou 2 8211 82K
+<%(O,a ,,M)) S12(0,0,0) 435 (0, 0%, ) 5 (0, 0% ) 55 12(0,0,0)

. 1 8K12 283K1’2 _ 28 K12
= <2u4 5.2(0,0,0) + 0* =252 (0,0,0) — 30* =5=52(0,0,0)

and we have already computed that

5‘K172 1 (9]{32 1
5. (0,0,0) = 20,00 9 =2(0,0,0) =

By differentiating and evaluating at (0,0,0), we get

2K 1 0%k, 1 Oks
0,0) = 9(0,0,0) dudv (0,0,0) ¢2(0,0,0) du

Oudv (0,0,
1 , 9%k dg
= ) ( —(0.0,0) + a1}(0,070)> .

The properties of the functions f;, i € N, and their partial derivatives give us

(ooo)g (0,0,0)

0’k
8u82 (0,0,0) = 30%k1(0,0,0) — p1o(pra — 0*) — pg(pao® — pig) — p(pe0® — 1)
and, by formula (2), we get

02K 2 T Kis i 0.0) = 30%k1(0,0,0) + (14 — 40*)k1(0,0,0) iy — 0*

Judv o4k1(0,0,0) ot

15



Finally, by using the fact that the partial derivative of g with respect to u at
(0,0,0) vanishes, we obtain

P Ky 2 1 D3ks 3 Oko 0%g

50 (0,0,0) = (0’070)W(0,0,0) 72(0.0.0) 9u 5o (0,0,0) 55 9 (0,0,0)
- 1 2%k d%g
= E0.00) <0 o5 (0:0,0) +3--3 9 (0,0,0)

We compute that

23k
.5 (0.0,0) = 90%£1(0,0,0) = Bprs0(pa — ) = 3p1s(140™ — 1) = B (o0 — )

and, by formula (1), we obtain

82K172 904]{1 (0, 0, 0) — 3(#4 + 40’4)1151 (0, 0, 0) . *3(#4 + 04)

guge 000 = o%%1(0,0,0) - ot
Finally
% 1 [(—2us  —3(psg + o) sy — ot —81y4
54(00’“4) 08< POR o2 =33 >: PETI
Likewise we obtain
O*w 1 Oks 0%k
0 —_ (2 0,0,0) — 302 0,0,0
ox 4( U7M4) 10k1(000)(u4a ( ) udv ( )
3 8k3 89 5 k’3
—_— 0,0,0 0,0,0 0,0,0
3 0k3 &%g
~ 71(0,0,0) du (0,0.0)5,5(0,0,0)).
We compute that
Oks3 0%ks 0%ks
9 —(0,0,0) = udv —(0,0,0) =0 and Sudv ——(0,0,0) = 2k1(0,0,0),
so that o1
w 2
Er (0 o 7M4) o8
Next we have
8K1 1 1 ( 3l<:1 6g )
~(0,0,0) = ——— 0,0,0 0,0,0
ow (0.0.0) 0*k1(0,0,0) ow ' ) - ow 9w 0 0:0)

and we compute that the partial derivative of k; with respect to w taken at
(0,0,0) is equal to

—314k1(0,0,0) + 2010 (140” — pi6) + pa2(pra — o) + p3 + pgpa — 2psp3

and that the partial derivative of g with respect to w at (0,0, 0) is equal to

(6 — 4140%)k1(0,0,0) + 21100> (140> — i) + p120° (pa — o)
+ 0% (ug + pgpa — 2us ) -

16



Whence

0K 1

—30%114k1(0,0,0) = (p6 — 4p40?)k1(0,0,0)  pao® — g
ow ’

04k1(0,0,0) N ot

(0,0,0) =

We insert these previous results in the expression in the formula (3) of the fourth
partial derivative of I, with respect to = taken at (0,02, uy) :

86[ 3 02 K11 6 83K171 1 0% K11
o 6(0 g ,M4) ﬁ o2 (0 0 0) 8 u2dv (07070)_’_78 out (07Oa0)

n 16p2 — 2ug0? + 240t

14
We have
Piiy 10 2000k by dby (O
o2 g ov:  ¢g20v Ov g2 Ow? g3 Ov
Thus
0?Ky 4 1 5 0%k1 ?%g
T (00,0 =~ <a 5-(0,0,0) - 5 29,0, 0))
a6k2(0,0,0) ( v (0,0,0) v (0,0,0) D) (0,0,0)

1 282]€1 829 28K1 1 8g
— ——2_9 ——=11(0,0,0).
o4k1(0,0,0) (U a2 o2 7 o ow (0,0,0)
We already know the values at (0,0,0) of the partial derivatives of g and k;

with respect to v. Moreover, the properties of the function f;, i« € N, and their
partial derivatives give us, after factorisation,

5 0%k dg
0?5 5(0.0,0) = 55

900,0,0) = (70 p1a — i — 86°)k1 (0,0, 0) — 24110 (114 — )
+2p6(pa — o) (ps + pi — 202 p6) — 20% (uso” — p)*.
As a consequence

82K1’1
02

o%k1(0,0,0) (0,0,0) = (70% 4 — pg — 86°)k1(0,0,0) — 2u10(pg — 0*)?

+ 26 (pa — 0*) (s + 13 — 202 p6) — 20° (60 — p13)* — 2(0™ — pua) (mo(m —a?)

2(04 - :u4)(:u4 - 404)k1 (0,0,0)
o2 '

+ ps(pao® — pg) + pe(peo® — ui)) -
Thus

82K1 1
37(0,0,0) = 207 (s — o) (papss — 1) = (0™ = 1})?)

202 + otpy + 02 pg — 408
+ s

o%k1(0,0,0)

k1(0,0,0).

By developing we get (p4 — o) (aps — p2) — (eo? — pu2)? = psk1(0,0,0). Thus

(92K1’1
Ov?

2pf —o'py —o® /~L6
6

(0,0,0) =

17



Next, since the partial derivatives of ¢ and k; with respect to w are null at
(0,0,0), we get

PKy 1 1 Pk 1 9%k dg
guzay 00:0) = 9(0,0,0) uzay 0 0:0) ¢2(0,0,0) du2 (0,0, O)a (0,0,0)
1 Ok 8%g 2k1(0,0,0) &%g dg
(000)8(000)82(000) (0’0’0)82(000)8 (0,0,0)
3
k1(0,0,0) d°g (0,0,0).

~ ¢2(0,0,0) duZdv

As in the computation of (82K171/8v2) (0,0,0), we notice that this expression
can be written as a function of the second partial derivative of K ; with respect
to u and of the partial derivative of K7 ; with respect to v :

PK 1 , 9k 9y
Ou2dv (0,0,0) = ak1(0,0,0) (U 8u28v( /0,0) = Ou2dv (0,0,0)
8 K dg 0%g
— e (000)a (0,0.0) = =2 (000)82(000))
After factorising, this is equal to
1 ok 9y 2(42 — 40®)
a4k1(o,o,o)( auzan 000 — 52, (0.0,0) = ==25—=#(0,0,0)

- 20" (Mw(/m — ") + ps(pa0® — pe) + po(pe0o” — Mi))) :

and the properties of the functions f;, i € N, and their partial derivatives, give
us, after factorising by k1 (0,0, 0),

8 k‘1 639
au2a 0.0.0) = 5055,
+20" (p10(pa — o) + pa(ac® — pie) + o (pso” — 1)) -

(0,0,0) = (024 + p6 — 80°)k1(0,0,0)

As a consequence

0Ky, 1 2(pi —40%) | 6
5u23v(0’0’0):a4k1(000)(_ =+ 0% + g — 8o )kl(o,o,o)
_ iAot to® Mo
- I

We finish this proof by computing the fourth partial derivative of K;; with
respect to u taken at (0,0,0). Since the partial derivatives of g and k; with
respect to u are null at (0,0,0), we get

e 1 9% k1(0,0,0) g
gui (0:0.0) =~ 57 (0,0.0) - (000)34(000)
6 0%k 9?g 6k1(0,0,0) [ d%g ?
~ 20,0,0) w2 0 V2000 506,y (8 (0,0 0)> |

18



After factorisation, it is equal to

1 264k‘1 849 282K171 629
04]{:1(070’0) (U 8’&4 (0,0,0) - %(0,0,0) — 6o 8’&2 (Ovoao)w(ovoao)) .
We compute that
0%k o*
2 1 g _ 2 6
0? 5(0.0,0) = 2-5(0,0,0) = — (2304 + 5 + 240°)k1(0,0,0)

+6(pa + o) (pa0(pa — ) + ps(pa0® — p6) + po(peo® — 1))

and we have already computed that

829 82K1,1
—(0,0,0) B

Ou?
+ 0% pio(pa — o) + 0*pg(pao® — pe) + 0*pg(peo® — ui)) :

+ ot
(0,0,0) = “404 (_ (14 + 40%)k1(0,0,0)

Thus we get
4 84Kl 1 2 6
ok <07 0, 0) ) 4’ (07 0, O) = _(230 Ha + 5”6 + 240 )kl (Oa 0, O)
U
6 + 0t + 404
o
Hence
'K, 7o'y — 5pe0” + 643

(0,0,0) =

Out o6

We have then

0°L (0,02, ja) = 3(2u3 — 0 pa — 0 pig) _ 6(—2p3 + 0t pa + 0% pue)
926 v Ha) = o4 14

N To* 1y — Sueo? + 63 N 1602 — 2ug0o? + 240t

ol4 ol4

We have shown that

PL, o . 40u — 1607k
B0 (005 ) = —————.
Thus
1 oatB+Y T ) ( ) 0 ) if (a,8,7)=(5,0,0),
. 07 ) = 5 —2
I8! DaedyPazy 00 o H) i oo i (@8.7)=(6,0,0)

v) Conclusion

The term A is then (5u3 — 20%u6)/(90014). The computations of the previous
section imply that
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Proposition 5. Let p be a symmetric probability measure on R whose support
contains at least five points. We suppose that (0,0,0) € Dy, and that

5/.@21 > 202/~LG~

Let q denote the definite positive quadratic form on R? given by

— 2 2 _ _ 4
V(y,2) eR>  qy,z) =2 _Fa,2 M T H6, P T 2
2a a 2a

Then, in the neighbourhood of (0,02, j14),

2t 2Py 0% part (5pf - 20%p6)2° gy — 0%z — )
202 204 1208 90014 ’ 4

L(z,y,2)

For many usual distributions, the term 5u3 — 202 is positive. For example
5u2 — 202pg = 126%c8 > 0, for p = (1 — 2b)g + b6_. + bd. with ¢ > 0 and
b €]0,1/2[. However we can find a probability measure on R for which this term
is non-positive. To this end, it is enough to take a measure whose sixth moment
explodes compared to the fourth moment. Let us consider the measure with

density
5 —1
1 > dy
— ——1
* 14 afb (-5.51(7) </_5 1+y6>

with respect to the Lebesgue measure on R. Its moments can be computed in
simple fractions X®/(1 + X5), a € {2,4,6}. We compute that 5u2 — 202ug is
non-positive (an approaching value is —0.483).

4 Construction of an interaction term

In this section we investigate how to build an interaction term whose associated
model is amenable to mathematical analysis. We first find criteria on p and H
so that I, — H has a unique minimum at (0, 02, j14) in any compact subset of ©*
whose interior contains (0,02, 114), and so that the expansion of I, — F — R still
holds for I, — H. Next we extend the criteria on H in order to control what
happens outside any compact of ©*, expecially what happens around the line
x =y = 0 of R®. We use then a variant of Varadhan’s lemma. We end this
section by proving that the function H given in the introduction satisfies these
criteria.

a) First investigations

Let us suppose that p is a symmetric probability measure on R whose support
contains at least five points. We assume that

[%}
(0,0,0) € Dy, and  5u3 > 202
In section 2 we saw that it seems natural to consider the interacting function
H = F + R with
4

2
12y4

R:(z,y,z) e RxR\{0} x R+—
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It satisfies
1
Yn>1 V(z,y,z) € RxR\{0} xR EH(xn,yn, zn) = H(x,y,2) .

In the neighbourhood of (0, 02, yu4),

B LQ 1 part 1 N (z — )zt 1
 2021+h 1208 (1+h)* 1208 (14 h)*’

F(z,y) + R(z,y, 2)

where h = (y — 0?)/0?. In the neighbourhood of 0, we have

1
H—hzl—h+h2—h3+h4+o(h4),
ﬁ =1—4h + 10n% — 20h* + o(h?).

Thus, in the neighbourhood of (0,02, y4),

x2 xZ(y o 02) S52(y o 02)2 ,LL4SU4
F(xa y) + R(l’,y; Z) - ? - 20_4 + 20-6 120-8
2y —0®)® iy —o®)  at(z—pa) | 2Py —o?)!
208 3010 1208 2010
Spart(y —o®)?  at(y —o?)(z — pa)
+ 6012 - 3510 +0(||x,y—02,z—u4||6),

Lemma 4 implies that, in the neighbourhood of (0,02, pu4),

2 ?(y —o?) | paz?
F(z,y) + R(z,y,2) = 22 2q4 1208
(513 — 202 pg)a®
+0<490014+‘I(y‘”2’2‘“4)

and then it follows from proposition 5 that, in the neighbourhood of (0,02, y4),

(5uf — 20 )2’

I,(:E,y,Z) - F(l’,y) - R(ZL'7y,Z) ~ 9014

+qly — 0%,z — pa) .

The computations of the previous section show that, in the neighbourhood of 0,

5puf — 20%ps g

2 _ 2y _ 2 -
I,(CL‘,U 7/144) F(x7<7 ) R(‘T>U 7M4) 90014

As a consequence, if 5u% < 20%ug then I, — F — R does not have a minimum at
(0,02, j14). Thus it is not possible to prove that I, — F — R is non-negative for any
symmetric probability measures on R, as we did in [1] for I — F'. The techniques
we used there have not been successful and we have not been able to show that
I, — F — R has a unique minimum for an interesting class of probability measures
on R. We will go around this problem by modifying the interacting function H
in order to « force » the function

1
Gp: (z,y,2) — L(z,y,2) — EH(nx,ny,nz)

21



to have a unique minimum at (0,02, ju4) for any n > 1, and to have the same
expansion we obtained above.

By analysing the essential ingredient of the proof of theorem 2 of [1], we consider
the following hypothesis :

Hypothesis 6. Let p be a symmetric probability measure on R whose support
contains at least five points. We assume that

(0,0,0) € Dy, and  5u% > 20%u.

Let H be a function from ©° to R. We suppose that there exists (Rp)n>1 a
sequence of upper semi-continuous functions from ©* to R satisfying, for any
(2,y,2) € O,

VTLZ 1 OSRYH-l(x:va) SRn(xvyaz) SR(Ivyaz)v

).

Vn >1 H(x,y,z)—F(x,y):an(

38

Yy
s
n

AR

Rn($7y7z) — 0

n—-+oo

and, for every (r,y,z) € R3,

T Y

V4
n(R—Rn)(W,\/ﬁ+02,— — 0.

\/ﬁ + ,LL4> n—-+oo
We have the following proposition :

Proposition 7. Suppose that p and H satisfy the hypothesis 6. If ¢ denotes the
definite positive quadratic form of proposition 5, then, for any (x,y,z) € R3,

x z 5u2 — 202
Y Jr02’7n+ﬂ4 My :Uf6x6

== ) (e o ) o) +

Let K be a compact subset of R® included in ©° such that (0,02, j4) belongs
to the interior of K. There exists ng > 1 such that I, — F — Ry, has a unique
minimum on K at (0,02, j14).

We will use the following lemma, which is a variant of Dini’s theorem :

Lemma 8. Let (gn)n>1 be a non-increasing sequence of functions defined on
a compact set X and which converges pointwise to a function g defined on X.
If the function g, — g is upper semi-continuous for any n > 1, then (gn)n>1
converges uniformly over X towards g.

Proof. For any n > 1, we put h, = ¢, — g. The sequence (h,)n>1 is non-
increasing and converges pointwise to the null function. For a fixed ¢ > 0 and
for any n > 1, we denote

Ap(e) ={x e X :hp(x) <e}.

These sets are open since, for any n > 1, the function h, is upper semi-
continuous. The convergence of the sequence (hy,),>1 implies that

X cJAne).

n>1
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We can extract a finite subcover : there exists N > 1 such that

Xc | 4.

n<N
Since (hp)nen is non-decreasing, then X C An(e). Thus
Vo e X IN >0 n>N = h,(z) < hy(z)<e.

This proves the lemma. O

Proof of proposition 7. In the neighbourhood of (0,02, pu4),

(5p3 — 20 pg) "

90014 + q(y - 02; g = /.L4) .

L(z,y,2) — F(x,y) — R(z,y, 2) ~
For every n > 1, we denote
G,=L—-F—-R,=(I,—-F—-R)+(R—R,).
The expansion of I, — F — R,, and the hypothesis 6 imply that, for (z,y, z) € R?,

2 2
r Yy 2 _* Spy — 207 s g
L-F-R, (777 y = ) — ; —r
n( ) nt/6’ \/n o Vn tha n—+oco aly:2) + 90014
Next the function R— R, is non-negative, thus G,, > I, — F — R and there exists
an open set U centered at (0,02, ju4) such that, for any (z,y,2) € U,

5pf —20% 6 g

1 2
Gn($, Y, Z) > EQ(y — 0,2 = p’4) + 180014

The right term of this inequality is non-negative since 5u3 > 202 6. Since ¢ is a
definite positive quadratic form, this term vanishes only at (0,02, uy). Thus we
proved that, for any n > 1, G, has a unique minimum on U at (0,02, j14) and
it is equal to O.

Without loss of generality, we can suppose that U is included in K. The set
K NU¢ is a compact subset of R® included in ©*. Let v, be the law of (Z, Z?)
when Z is a random variable with distribution p. We denote by A the Log-
Laplace of Yp and by [ its Cramér transform. The measure p is symmetric and
(0,0,0) € Dy, . Moreover we have

Y(u,v) € R? Au,v) = A (u,v,0).

As a consequence (0,0) € 5/\ and proposition 2 implies that the function I — F
has a unique minimum at (0, 0?) on R x R\{0}. Next, for any (z,v, z,u,v) € R,

L(z,y,2) > au+yv+ 2 x0—A(u,v,0) = 2u+ yv — Au,v) .

Taking the supremum over (u,v) € R?, it comes that

2 2
V(z,y,z) € R x R\{0} x R L(m,y,z)—;—yZI(x,y)—;—y.

Hence, for (z,y,z) € K N U, there are two cases :
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x Either (z,y) # (0,0?%) and then L (z,y,2) — F(z,y) > 0.
x Or (z,y) = (0,02) and then z # u4. The function I, has a unique minimum
at (0,02, ug) in which it is null (see chapter V of [6] for a proof of this result).
Thus

L(0,0%,2) — F(0,0%) = L,(0,06% 2) > 0.

In each case )

V(z,y,2) e KNUS  L(z,y,2) — ;—y >0.

By hypothesis, the sequence of functions (R, + F — I,),,>1 is non-increasing and
converges pointwise to F' — I,. Moreover, for any n > 1, R,,+F — 1, is upper semi-
continuous. Hence the previous lemma implies that (I, — F — R,,),>1 converges
uniformly to I, — F on K NU€. As a consequence there exists ng > 1 such that
I, — F — R,, is positive on K NU*®. Hence I, — F' — R,,, has a unique minimum
on KNU® at (0,02, pg). O

b) Around Varadhan’s lemma
We saw in section 2 that the law of (S, /n, T, /n,U,/n) under fig, , is
enF@y)tnBa(zy2)q o, (z,y,2)db, ,(x,y, 2)

/6* 6nF(I’y)+nR"(m’y’Z) d’l};n,p(xa Y, Z)

We search additional conditions on H and p so that, if A is a closed set which
does not contain (0,02, u4), then

1 ~
hriliup - In /@mA el (@ y)+n R (2,y,2) d,, ,(z,y,2) <0.
n o0

To this end, we need a variant of Varadhan’s lemma. By proposition 7 we can
conclude if A is a compact subset of 6. We have to extend the criteria on H
in order to control what happens around the line 2z = y = 0 of R3. We proceed
similarly as in [1].

Hypothesis 9. Assume that p and H satisfy the hypothesis 6. We suppose that
p has a bounded support and that, for any r > 0, there exists 6 > 0 such that

V(z,y,2) € ©N(Rx]0,§] x R) V¥n >1 R.(z,y,z) <.

Hypothesis 10. Assume that p and H satisfy the hypothesis 6. We suppose
that there exists cqg > 0 such that

V(z,y,2) €0 VYn>1 R, (x,y,2) < coy.

Proposition 11. Let p and H fulfill the hypothesis 6. We have

1
hmlnf — ln /e* enF(m,y)+nR,l(x,y,z) dl/\/;n,p('r) Y, Z) 2 0 .

n—+oo n
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Suppose that p and H also satisfy either the hypothesis 9 or the hypothesis 10.
Then, for any closed subset A of R which does not contain (0,02, j14), we have

1 ~
limsup — ln/ enf @y tnba(@y.2) gy (1 oy 2) < 0.
n—+oo T & NA

Proof. The large deviations principle satisfied by (7, ,)n>1 implies that

lh’l enF(rc,y)+an(r,y,z) v (.]3 y Z)
n o °n,p PR

> liminfllnﬁ,n,p(@*) > —inf {I,(z,y,z) D (x,y,2) € é} =0.

n—+oco n

Let us show the second inequality. Proposition 4 of [4] states that there exists
4 > 0 such that, for § €]0,0?[ small enough and n large enough,

F o~ —
/2 e (x7y)]1$2§y]10<y§5 dVﬂ,p(mv y) <e "7,
R

where 7, , denotes the law of (S, /n,T,/n) under p®".

The function H satisfies the hypothesis 9 or 10 thus we can choose § small
enough so that

Y(z,y,2z) € ©N (Rx]0,§] x R) Vn >1 R, (z,y,2) <

o2

Hence
/ enF(z,y)+an(m>yvz)]1y§6 dﬁmyp(g;,y,z)
o
< /2 / @D, s di, (Y, 2)
o <
< en’Y/Q / enF(£7y)]lw2<y]lo<y<6 dD;7l,p('T’ Y, Z)
R3 - B

= en'y/2 Az enF(w’y)]lz2§y]10<y§§ dgn,p("% y)

< en'y/2e—n'y — e—n'y/2 ]
Thus, for § small enough,

1 ~
hzli_up - In /@k enF(ac,yH—ann(90,1/,2)ILyS(S dn,, (x,y,z) < —v/2.
n oo

We define As = { (z,y,2) € ©NA:y>J}. We have
ONAC{(z,y,2) €0 :y<s}UA;s.

If p and H satisfy the hypothesis 10, we have, for any (z,y,z) € © and n > 1,

1 1
L(JJ,?J,Z)_F(%ZU) —Rn(l’,y,Z) Z I.(mvyaz) - 5 — CoyY Z L($,y72)—§ _CO\/;~
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Since (0,0,0) € ﬁA., there exists wg > 0 small enough so that (0,0,wg) € Dy, .
By the definition of the Cramér transform, we have

L(z,y,2) >0x2z+0xy+wy X z— lnAQeOXtJrOX#*wOXt4 dp(t) .

As a consequence

1
L(I,y, Z) - F(Ivy) - Rﬂ('rayvz) > WoZ — CO\/> - 5 - 11’1/ e’lﬂot4 dp(t) .
R
The right term converges to +00 when z goes to +oo and it does not depend
on x, y and n. As a consequence, there exists zy > 0 such that, for any n > 1,

V(z,y,2z) € N (R xR X [z9,+00]) L(xz,y,2) — F(z,y) — Ra(z,y,2) > 1.

We put K = {(x,y,2) € © : 2 < max( 20,24 ) }. The above inequality implies
that

inf inf (L—F—-R,)>1.

n>1 AsNKe
Moreover, we can reduce ¢ so that the set {(z,y,2) € © : y > d}NK is a
compact subset of R? included in ©* and whose interior contains (0,02, ).
Thus proposition 7 ensures the existence of ng > 1 such that I, — F — R,,, has a
unique minimum in { (z,y,2) € © : y > § }N K at (0,02, u4). Since I — F — Ry,
is a good rate function and As N K does not contain (0,02, 14), we have

A{S%fK(L*F*Rno)>O-

AS a consequence
inf (L — F = Ry) > 0.
5

If p and H satisfy the hypothesis 9 and if K’ denotes the closed convex hull of
the support of 1,, (which is then compact), then we can also reduce 0 in order
to apply proposition 7 and find some ng > 1 such that

i}‘lf(]._F_Rno): inf,(L—F—Rn0)>0.
s 8

A5NK
In both cases, the usual Varadhan lemma (see [2]) implies that there exists

~1 > 0 such that, for n large enough,

°n,p

/ e F (@ y)+nRng (z,9.2) g3 (z,y,2) <e ™,
As
Finally, since R,, < R, for any n > ng, we have

1 ~
timsup L [T 5 07, (2,,2) < 1
n—+oo N As

Hence

1 -
limsup — ln/ et (@ y)+n R (2,y,2) A, ,(z,y,2) < max (—l , —'71) <0.
o nA 2

n—+oco N

This ends the proof of the proposition. O
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c) One good candidate
Let p satisfies the hypothesis 6. One good candidate for H is
2 1 zaty®

x
H : O — — + — .
(,9,2) € 2y + 12 49 + 210 4 zxtyt

Indeed, the sequence (R,),>1 defined by
_ i Z{174y5
12y + nz'0 + zatyt’

Y(z,y,2) €6 ¥Yn>1 R,(z,y,2)

consists of upper semi-continuous functions and, for any (z,y, z) € 6,

Vn>1  0< Ryti(z,y,2) < Ro(x,y,2) < R(z,y, 2),

Vn > 1 H(:c,y7z)—x—2:an(£gi),

»
n nn

2y
Rn(ﬂi, Y, Z) njoo 0.
We have next
zzt 1 zatyd zat(nzt® + zaty?)

R-R =2 - .
( n)(2,9,72) 12y% 124° + na'0 4+ zaty*  1294(y% + nal0 + zaty?)

Evaluating in (z/n'/6 y/\/n+ 02, 2/v/n + 1), we get
x \10 z T \4/ y 9 a0 oSy
() + (Grrm) Gim) (Jr o) ~

9 10 4 4
Y 4,2 o A TN (YL p2) g8
(ﬁ”) +n(76) +(¢ﬁ+“4) (i) <\/ﬁ+0> 4
and
(z/v/n + pa)ain—2/ N paz’
12(y/v/n+ 02)4 1208n2/3 "

Thus
4 10, 8
_ r Y 2 2 ~ HaZx T+ o
n(B ~ Rn) <n1/6, Vn o Vn +,u4> " 1205023518 2/
paz* (20 + o8 p14)
12026n1/3 n—+oo

0.

Hence H satisfies the hypothesis 6. Finally, for any (z,vy, z) € ©*, we have
22ty® < Y10 4 nyal® 4+ 22ty® = y(y° + na'® + 2ztyt).

Thus H also satisfies the hypothesis 10.

5 Fluctuations theorem

In this section, we suppose that p has a density f with respect to the Lebesgue
measure on R. We will proceed as in section 7 of [1] to obtain our fluctuations
result: we first compute an asymptotic expression of the density of 17", for n
large enough. Next we prove a generalisation of theorem 1 with the help of
Laplace’s method.
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a) Asymptotic expression of the density of 1,

Proposition 12. If p is a probability measure having a density f with respect
to the Lebesgue measure on R, then 1/.’;3 admits a density with respect to the
Lebesgue measure on R3. Suppose that, for some p €]1,2],

/ fP(@) P (y) [P (2)
B |(@+y+2)@—y)y—2)E-o)

dx dydz < 400. (*)

Then, for n large enough, 1,, , has a density g, with respect to the Lebesgue
measure on R3 such that, for any compact subset K of Aj,, when n goes to +oo,
uniformly over (z,y,z) € K,

gn(l', Y, Z) ~ (%)3/2 (det D:())z,y,z)L)l/z e—n[-(w,y,z) )

Proof. Let ® be a measurable positive function on R?. We have

/ O(z,y,2) dv’ (2,y, 2)
R(}
:/ O(uy + up + uz, vy + v + v3, w1 + wp + w3)
RQ
x du,,(u1,v1,w1) di,(ug, v2, wa) di, , (us3, v3, w3)
= / D(zx+y+z2° +y° + 2% 2" +yt + 2) dp(x) dp(y) dp(=)
R3
:/ O(x+y+z,22 +y*+ 222" oyt + 20 f(2) fy) f(2) dedy dz.
Rfﬁ
Let us make the change of variables given by
0:(z,y,2) ERP— (x+y+z,2° + 92+ 22 2t +y* +24).

The function ¢ is C* on R3. We compute its Jacobian : for any (z,y, z) € R?,
we have

1 1 1 1 0 0
Jacpyp =12z 2y 2z|=8|xz y—x z—x
43 4y 423 IR, S R R
=8 (- -2 = (- )’ — o)
:8((yfx)(z—z)(z2+xz+x2)7(zfx)(yfz)(y2+xy+x2))
:8(y_$)(2—$)(Z2+$Z+x2—y2—xy—x2))
=8(y—z)(z—z)(z—y)(z+y+=z).

We introduce the set

H={(2,y,2) R :x+y+2=0} U{(z,9,2) eR’:x =y}
U{(x,y,z)GR?’:x:z}U {(:E,y,z)GRB:y:z}.
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It is the union of four hyperplanes on which the Jacobian of ¢ vanishes. We
define next

O1={(z,y,2) eR3:z <y <z}, Oy ={(z,y,2) ER3:z <2<y},

O3 ={(z,9,2) eR*:y <z <z}, Oy={(2,y,2) eR¥:y<z<ua},

Os ={(z,y,2) eER*:z <z <y}, Os={(z,9,2) ER3: 2z <y<ua}.
The six open sets Oy, ...,0Og are a partition of R®\H. On each of these open

sets, the Jacobian of ¢ does not vanish. The set H is negligible with respect to
the Lebesgue measure on R3, thus

6
JREVEIICIEE > /| () F@F ) () drdy s

6
= Z/; @(ap(x,y,x))g(x,y,z) |Jac(x,y,z)90| dx dy dZ7
i—170:

where g is the function defined on R*\'H by

f(@)f(y)f(2)
8(+y+z)(x—y)(y—2)(z—2)

V(z,y,2) ERN\H  glz,y,2) = |

On each open set O;, i € {1,...,6}, the function ¢ is C! and its Jacobian
does not vanish. In order to apply the global version of the inverse function
theorem, we still have to prove that ¢ is one to one on each of these open
sets. Let (u,v,w) € R? such that there exists (z,y,2) € R3\H which verifies
(u,v,w) = ¢(x,y, z). We have then

r+y=u-—=z, x2+y2:v—z et x4+y4:w—z4.
We search a polynomial equation satisfied by z. We have
(x+y)2 ($2+y2) =$4+y4+2$2y2+2$3y+2ﬁy3
=at 4yt + 22y (my+x2+y2)

r+y)?+22+y?
:x4+y4+((z+y)2—(z2+y2))( ) 5 .
Hence
u—2)2+v—22

2

(u—z)z(v—z2):w—z4+((u—z)2—v+22)(

By developping, we get

4 ,U2

4uz3—4u222+2u(u2—v)Z—i—u?v—%%—?—w:O.

Since (z,y,2) ¢ H, we have u = 2 +y + z # 0 and thus P, , .)(2) = 0 with

u2 —v uv U3 1)2 w

X+———=4+———.
2 +4 8+8u 4u

Plyow)(X) = X? —uX? +
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Since z, y and z are exchangeable in the expression of ¢, we also have that

P(uﬂ),w) (I) = P(u,v,w) (y) =0.

Let i € {1,...,6}. We have shown that, if (u,v,w) € R3 is such that there exists
(z,y,2) € O; satistying (u,v,w) = ¢(x,y, z), then x, y and z are the zeros of
the cubic polynomial P, , .- As a consequence ¢ is one to one on O;. Thus,
by the global version of the inverse function theorem (see theorem 3.8.10 of [7]),
for any i € {1,...,6}, the map ¢ is a C!-diffeomorphism from O;" to ¢(O;").
We denote by gp;l its inverse function.

Since x, y and z are exchangeable in the expression of ¢, we get that all the
sets ©(0;), i € {1,...,6}, are equal to some set U and, for any (u,v,w) € U,
the coordinates of <p;1(u, v,w), i € {1,...,6}, are the same up to a non-trivial
permutation. As a consequence

Vie{l,...,6} goyp; b =gop?

Let us make the change of variables given by ¢ on each open set O; :

6
/ CI)(x,y,z)du T,Y,2 Z/ (u v,w)gogoi_l(u,v,w) dudvdw.
R3 i—1 7/ ¥(0:)
The previous remarks about the symmetric structure of ¢ imply that
/ O(x,y, 2) dujf’(a:, Y,z) = / D(u,v,w) Ggogol_l(u, v, w) 1y (u, v, w) dudv dw .
R3 R3

Hence V:;B admits the density f3 =6go apl_l x 1y; with respect to the Lebesgue
measure on R3.

Next, for any p € [1, 400, we have
/ 12 (u, v, w) dudv dw = 6”/ (g o @fl(u,v,w))p dudvdw .
RS u

Let us make the change of variables given by gpl_l

o f:f(u,uw)dudvdw:Gp/ 9" (z,y, 2 |Jac(myz)go drdydz.

01

By symmetry, we write this integral

(=2}

o I3 (u, v, w) dudv dw = 67~ Z[) 9P (z,y, 2) |Jac(1’y’z)ap| dx dy dz

i=1

671 . 9P (z,y, 2 |Jac(myz g@| drdydz.

E

R3
This is equal to

(3) / |< 17 (@) f7(9)f7(2) _dwdyds.

4 r+y+2)(@—y)(y—2)(z-2)
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As a consequence, if this integral is finite for some p €11, 2], then f3 € LP. Thus
proposition A.61 of [1] implies that, for n large enough, ,,, has a density g,
with respect to the Lebesgue measure on R? such that, for any compact subset
K of Aj,, when n — +o0, uniformly over (z,y,2) € K,

n 3 1/2 —nly (z,y,2)
gn(T,y,2) ~ (%) (detD 7 I,) e .
This ends the proof of the proposition. O
Let us prove that, if f is bounded, then there exists p €]1, 2] such that

/ TP(2) fP(y) fP(2)
R |(z+y+2)(x—y)(y —2)(z — )|

» dr dydz < +o00.
Young’s inequality implies that, for any positive real numbers a, b, ¢ and d,
1 <1< 1 . 1 ><1<1+1+1+1>
abed — 2 \(ab)? = (ed)?) — 4 \a* b+ ¢+ dt) "
By this inequality and by the symmetry of the integral in z, y and z we have

/ fP (@) P () f7(2)
B |(

1
dedydz < - (I; + 315)

z+y+z)(e—y)(y—2)(z—a)" 4
i F ) ) ()
) fP(y) fP(2
Ilz Rsmdxdydz,
TP () fP(y) fP(2)
IQ: R3dedydz.

Making the change of variable (z,y,z) — (z +y + z,y, 2), we get
JP(u—v —w) fP(v) f*(w)

I = o \u|4(p_1) du dv dw
Plu— v —w) FP(v) P
L[ s g g,
[—1,1] xR2 Ju|™”
Py — v —w) fP(v) P
Y L VYT
[~1,1]°xR2 e

P P
<t [ LB dvavaw
[~1L,1xR2  |ul (P=1)

—|—/ fPlu—v—w)fP(v)fP(w)dudvdw.
[~1,1]¢xR2
Fubini’s theorem implies that

L < Ifle < / 11 |uﬁ§.fl)> ([rw i)+ [ @ i)

1. Actually it is proposition 16 of to the ARXIV version of [1].
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We have
/ f7(x) d = / PP @) () de < | f2 / f(z) dz < +o0.
R R R

Thus I; < +oo as soon as p < 5/4, since the function u +— |u|*1~P) is then
integrable on [—1,1]. We show similarly that I» < 400 as soon as p < 5/4.
Hence

Vp € [1,5/4] A@ : fP(@) P () 7 (2)

r+y+z2)(r—y)(y—2)(z —x)|

5 dr dydz < +00.

b) Proof of theorem 1

We prove in fact a more general fluctuation theorem than theorem 1.

Let p be a symmetric probability measure on R and let H be a real-valued
function defined on ©* such that, for any n > 1,

ZHn:/n/exp(H(x1+~-~+xn,x%+~--+xi,m%+~--+xi))

s

X Liagsotazsop [ [ do() < +oo.
i=1

We consider (X%)i<r<n an infinite triangular array of real-valued random va-
riables such that, for all n > 1, (X}, ..., X") has the law [ig,p ,, which is the
distribution with density

exp (H (01 + 4 o+t o+ +28) Tatsagoo)

Hymn
with respect to p®™. We denote
Sp=X 4+ X0, Tn= (X224 +(X2)? and U, = (X})"+ - +(X1)*
We have the following general fluctuation theorem :

Theorem 13. Let p be a symmetric probability measure on R whose support
contains at least five points and such that

Jwy >0 / ewos" dp(z) < +0.
R

We denote by o? the variance of p, by py its the fourth moment, by pg its sixzth
moment and by ps its eighth moment. We assume that

5/14421 > 202;“’6 .

Suppose that H satisfies the hypothesis 6 and that p and H fulfill either the hypo-
thesis 9 or the hypothesis 10. Then, under [if n,p, (Sn/n, Tn/n, Up/n) converges
in probability towards (0,02, ju4).

Moreover, if p has a density f with respect to the Lebesque measure on R such
that, for some p €]1,2],

/ fP(@) 7 (y) 7 (2)
B |(

zt+y+2)e—y)y—2)(-a)""

drdydz < 400, (%)
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then, under [ign, p
9 1/6 1/6 -1 6
45" e 5 ()1 )
<g2_ 5) il e \2 ) T\G) P\ T1R) %

We proved in the previous subsection that, if f is bounded, then it satisfies (x)
for any p €]1,5/4[. We have also proved in section 4.c) that the function

2 4,5
T 1 zxty

H:(r,y,2) €0 — = 4 —
(@,y,2) 2y+12y9+x10+zz4y4

satisfies the hypothesis 6 and 10. Hence theorem 1 is a consequence of this
theorem.

Considering our article [4], we could prove this fluctuation theorem for p having
an absolutely continuous component (and not necessarily having a density which
satisfies (x)) or, more generally, for p satisfying the Cramér condition

Va >0 sup
ll(s,t,u)|>a

/eisz—i—itz2-i-iuz4 dp(z) <1. (C)
R

However the proof would be much more technical.

Proof of proposition 13. We denote by 6,,, , the law of (S, /n,T,/n,U,/n)
under 7, ,. Let U be an open neighbourhood of (0,02, pu4) in R3. Suppose
that p and H satisfy the hypothesis 6 and also either the hypothesis 9 or the
hypothesis 10. Then proposition 11 implies that

1 1
limsup — Iné,,, ,(U¢) = limsup — ln/ enFentnln(@u.2) g (z,y,z)
e nue

n—+oo 1 n—+oo 1

1 ~
— liminf — ln/ el (@ y)+nRa(2,y,2) d,.,. ,(z,y,2) <0.
e

n—+oo n

Hence there exist € > 0 and ng € N such that for any n > ng,

b,.,(U)<e™ — 0.

n—oo
Thus, for each open neighbourhood U of (0,02, p14),
n Tn n
lim f,., ((S—,—,U—> € U°> =0.
n——+o0o ' n n n

This means that, under [, ,, (Sn/n,Tn/n,Uy/n) converges in probability to

(Oa 0—2, /~L4) .

Next, in section 4.a), we proved that, in the neighbourhood of (0, 02, pu4),

(5u3 — 20°ug)a®
90014

Thus, there exists § > 0 such that, for any (z,y, z) € Bs,

L(&y,z)—F(x,y)—R(&y,z)~ +Q(y_0272_u4)'

(5u1 — 20% g )2°

(L= F=R)(zy,2) =

1
+ 5‘](3/702727#4)7
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where Bs denotes the open ball of radius § centered at (0,02, us). We have

R, < R for any n > 1, thus, for any (x,y,2) € Bs and n > 1,

(5uf —20%pg)a® 1 2

— 4 —q(y — — lg). 4
180514 +5ay =02 — ) (4)

We can reduce 0, in order to have By C K where K is a compact subset of Aj,

so that Bs C Aj, C ©".

(L = F = Rn)(2,y,2) >

Let n > 1 and let f : R — R be a bounded continuous function. We have

S, 1
E- _n - - 1/6\ nF(z,y)+nR,(z,y,z) dz
HKn,p (f <n5/6>> ZHJL /@* f(‘rn )6 Vonyﬁ(x7y7 Z)
A, +B,
B ZH,n ’
with
A, = (xn1/6) enF(@y)+nRa(z,y,2) dv,, ,(z,y,2),

Bs
B, = / f(znt/0) enF@ytnbn(@y.2) g (2 y 2).
e nBS '

Suppose in addition that p has a density f with respect to the Lebesgue measure
on R such that, for some p €]1,2], the function

fP(@) P (y) 7 (2)
(@ +y+2)(@—y)y—2)(z—a)

is integrable. Then proposition 12 implies that, for n large enough, 7, , has a
density g, with respect to the Lebesgue measure on R3. Let us introduce the
factor e~ (#:1:2) in the expression of A,, :

(v,y,2) —

A, =n’/? (xn1/6) e_"G"(“J’y’Z)Hn(x, y,z)dxdydz,
Bs
where G,, = I, — F — R,, and H,, : (z,y,2) — e"o@¥:2) g (. y 2)/n3/?. We
define
Bs, = {(z,y,2) € R®: 2?/n*/® 4% /n+ 22 /n < 6%} .

Let us make the change of variables given by

(@,y,2) — (@n V0, yn™ V2 + 6% an™2 4 ),
with Jacobian n=7/6 :
_1/3 _ r Yy 2 *
A,=n - (x)exp( nGy, <n1/67\/ﬁ+0’\/ﬁ+u4)>
T Y 9 %
X Hn (W,%‘FU 7%4‘#4) d(Edde

We check now that we can apply the dominated convergence theorem to this
integral. The uniform expansion of g, given by proposition 12 means that for
any « > 0, there exists ng € N such that, for any n > ny,

(2,y,2)

Y(z,y,2) € K ‘Hn(x,y, z) (2m)3/? (det D? I,)_l/2 - 1‘ <a.
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If (2,y,2) € Bsn, then (2,,Yn, 2n) = (xn™ /0 yn=2 + 62 2n=Y2 + uy) € B,
which is included in K. Thus for all n > ng and (z,y, 2) € Bsn,

—1/2
v z) @ (@D, ) ] <

(wn yYn 7zn)

Moreover (2, Yn, 2n) — (0,02, ) thus, by continuity,

)7 o Dhant) = (DR

n—-+oo

(D, e

(T Y,

whose determinant is vVo2a, with a = (jug — 0®) (s — p3) — (g — 02pa)?. It is
positive according to lemma 3. Therefore

—1/2
]lBé,n(xa%Z)Hn(wmynyzn) — ((277)302a) .

n—-+o0o

Next, proposition 7 implies that, for any (z,vy,2) € R?,

5u2 — 202
53 Uﬂ6x6>.

exp (=nGy (Tn, Yns 20)) | — exp (—q(y7 z) 90514

Let us check that the integrand is dominated by an integrable function, which
is independent of n. The function

(z,y,2) — (D?I7y72)l.) -1/2

is bounded on Bs by some My > 0. The uniform expansion of g, implies that
for all (x,y,z2) € Bs, Hp(z,y,2) < Cs for some constant Cs > 0. Finally, the
inequality (4) above yields that, for any (z,vy,2) € R?,

]lBJ,n (.23, Y, Z)f(x) exXp (_nGn (Z‘n, Yn» Zn)) H, (l'm Yns Zn)

1 5u2 — 202 g
< fllnCoexp (- gatn ) - IS )

The right term defines an integrable function on R?, thus it follows from the
dominated convergence theorem that

W 1/3 f(@) (

Fubini’s theorem implies that, for some constant k > 0,

5u2 — 202 g
1/3 4 6
A, o knt/ Af(a:)exp (— 5051 © dx .

2 _ 9.2
_ 5“420“6x6> dzdydz .

Let us focus now on B,,. Proposition 11 implies that there exists € > 0 such
that, for n large enough, B,, < ||f|lcce™ " and thus B,, = o(n'/3). Therefore

_ 5pi — 20 s 6) da

/3
A, + B, ol kn A{f(x) exp ( 90511
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Applying this to f =1, we get

5u2 — 202 g 5u2 — 202 g —1/6 (1)
o~ 1.n1/3 _ 9OHy 6 _ 1/3 4 1
Z"+ kn /Rexp< 90514 z°| dx = 3kn 90514 T 5

Finally

5u4—20u66
((30) o B o)
n?/4 5 (51— 2021 1/6F(1>
90514 6

The ultimate change of variables y = (5u3 — 20%)'/%x/(504)'/¢ gives us theo-
rem 13. O

6 Fluctuations of order n!~1/2¢?

Let k > 4. We denote by I, the Cramér transform of (Z, 22, 7%, ... Z?k=2),
where Z is a random variable with distribution p. We would like to find a large
class of probability measures p on R such that :

x There exists an interacting function Hj, from R* to R such that, for any n > 1,
the function

1
Gn,k : (?leyz, e ,yzk—z) — I.k(y1,y2, e 7y2k—2) - ﬁHk(nyl,nyg, e 7ny2k—2)

admits a unique minimum at (0,02, 4, . . ., plox_2), where o2, iy, . . ., flog_2 are
the successive moments of p.

* For any n > 1, we denote by Z,,  the integral
/’ GXp(Hk <$1+'”+l‘n, 1’%+"'+LL’Z, ERER x%k+ "+xik>> H dp(xz)

and we suppose it is finite.
% There exist A, > 0 and a function g from RF~! to R satisfying

/ e~k (Y2, Y2—2)/2 dys ... dysg—o < 00
R

such that, in a neighbourhood of (0,02, ju4, .. ., fi2k—2),

G (Y1, Y25 - s Yok—2) ~ Apyt® + qr(y2 — 02, ... Yak—2 — fiok—2) .

In this case, we consider (X}')1<k<n an infinite triangular array of real-valued
random variables such that, for all n > 1, (X!,..., X7) has the distribution

We denote S,, = X{* + -+ + X! for any n > 1. By using arguments as in the
last sections, we could prove the following :

—1
Sn £, (/ exp(—Ary?*) dy) exp(—Apz?F) dz .
R

nl=1/2k noo
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Unfortunately the proof of such a result does not seem to be possible with the
techniques we employed in this paper, for several reasons :

* In order to obtain the expansion of G, i, in the case k = 2 or 3, we made very
long and tedious computations. Of course we could repeat these computations
for £ = 4, then £ = 5, ... But it would be very complicated and this is not
reasonable if we do not find a simple way to determine the variable A, for any
k > 4. Moreover we have not understood why, for £ = 2,3, the terms « we do
not want » in the expansion of G,,  vanish.

* For k = 3, there are probability measures such that Ay, is negative. In the same
way, there may exist ky > 4 such that A, < 0 for any probability measure. In
this case, Gy, x, could not admit a minimum at (0,02, ug, ..., pok—2) and we
should find new criteria on Hj, to solve this problem.

* With the « natural » interacting function in the case £ = 3, we have not
managed to prove that Gy, 3 has a unique minimum at (0,02, uy) (while our
simulations tend to conjecture this is true). We had to force the interacting
function to have the desired behaviour by finding some suitable criteria. Mo-
reover the candidate we propose for H is rather complicated. We also failed to
make convincing computer simulations with our modified model (although it is
amenable to mathematical analysis) : the convergence is too slow because

k— _

n n n

becomes negligible only for very large n.
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