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Abstract

Let p and p be two probability measures on R which are not the Dirac
mass at 0. We denote by H(u|p) the relative entropy of p with respect
to p. We prove that, if p is symmetric and p has a finite first moment,

then )
([ )

2/Rz2 du(z)

with equality if and only if 4 = p. We give an applicaion to the Curie-
Weiss model of self-organized criticality.

H(ulp) >

)
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1 Introduction

Given two probability measures 1 and p on R, the relative entropy of p with
respect to p (or the Kullback-Leibler divergence of p from p) is

. du

f(Z)Inf(z)dp(z) ifp<pand f=—

R

400

H(ulp) = dp

otherwise ,

where dy/dp denotes the Radon-Nikodym derivative of p with respect to p when
it exists. In this paper, we prove the following theorem:

Theorem 1. Let p and p be two probability measures on R which are not the
Dirac mass at 0. If p is symmetric and if u has a finite first moment, then

([0

Hiulp) > e )
22 z
2 / d(z)

with equality if and only if u = p.

A remarkable feature of this inequality is that the lower bound does not de-
pend on the symmetric probability measure p. We found the following related
inequality in the literature (see lemma 3.10 of [1]): if p is a probability measure
on R whose first moment m exists and such that

2
Jv>0 YAeER / exp(A(z —m)) dp(z) < exp (@) ,
R

then, for any probability measure p on R having a first moment, we have

H(plp) = % (/deu(Z) —m)2 :

Our inequality does not require an integrability condition. Instead we assume
that p is symmetric.

The proof of the theorem is given in the following section. It consists in relating
the relative entropy H (- |p) and the Cramér transform I of (Z, Z?) when Z is a
random variable with distribution p. We then use an inequality on I which we
proved initially in [2]. We give here a simplified proof of this inequality.

In section 3, we apply the inequality of theorem 1 to the Curie-Weiss model of
self-organized criticality we designed in [2]. We prove that, if (X},..., X") has
the distribution

_ 1 (g + -+ a,)? -
fin,p(21; - Tn) = ——exp <2$?++1’2 Loz soy | [ do(as)
" n i=1

for any n > 1, and if p is symmetric with compact support and such that
p({0}) < 1/+/e, then, for any continuous function f: R — R,

S - [ fG)ante) ze) ~0.
k=1 R

Ve >0 lim fiy,, <
n—o0



2 Proof of the theorem

Let p and p be two probability measures on R which are not the Dirac mass
at 0. We first recall that H(u|p) > 0, with equality if and only if u = p.

We assume that p is symmetric and that u has a finite first moment. We denote

- o).

Q/RZQ du(z)

If u = p then F(u) =0 = H(ulp). From now onwards we suppose that p # p.
If the first moment of p vanishes or if its second moment is infinite, then we
have F(u) = 0 < H(u|p). Finally, if 44 is such that H(u|p) = +o00, then Jensen’s
inequality implies that

Fp) <1/2 < H(plp)-

In the following, we suppose that

/ zdu(z) # 0, / 22du(z) < +oo,
R R

and that H(u|p) < +o0o. Thus p < p and we set f = du/dp. Tt follows from
Jensen’s inequality that, for any p-integrable function ®,

/RtIDd/VL—H(Mp):/Rln(e;) d,u<1n/Re;du:ln/Re‘bdp.

As a consequence

sup {/@duln/e‘bdp}gH(Mp).
deLt(u) LJR R

In order to make appear the first and second moments of p, we consider func-
tions ® of the form 2 — uz + v22, (u,v) € R%. This way we obtain

1 [ zau. [ #au) < mral),

Y(z,y) € R? I(z,y) = sup {uz + oy — ln/ euatve’ dp(z) } .
(u,v)€ER? R

where

The function [ is the Cramér transform of (Z, Z?) when Z is a random variable
with distribution p. In our paper dealing with a Curie-Weiss model of self-
organized criticality [2], we proved with the help of the following inequality that,
under some integrability condition, the function (z,y) — I(z,y) —22/(2y) has
a unique global minimum on Rx ]0, +oo[ at (0, [ 22 dp(z)).

Proposition 2. If p is a symmetric probability measure which is not the Dirac
mass at 0, then
2
Ve #0 Vy#0 I(x,y)>;—.
Y



We present here a proof of this proposition which is simpler than in [2].

Proof. Let 2 # 0 and y # 0. By definition of I(z,y), we have
x x? vz w222

I(z,y Zxx—i—yx(—)—ln/exp(— )dpz

(@) y 2y* R y o 29 )

x? / (xz x2z2)
=——In [ exp| — — dp(z).
2y R y o 2y? (2)

Let (s,t) € R%. By using the symmetry of p, we obtain

/R exp(sz — 122) dp(z) = /R exp(—s7 — 122) dp(2)
= % </R exp(sz — tz?) dp(z) + /Rexp(—sz - tZQ)dP(Z)>
_ /R cosh(sz) exp(—tz2) dp(=)

We choose now t = s2/2. We have the inequality
Vu € R\{0} cosh(u) exp (—u?/2) < 1.
Since p is not the Dirac mass at 0, the above inequality implies that

5222

Vs #£0 /R cosh(sz) exp (2> dp(z) < 1.

We finally choose s = x/y and we get

which is the desired inequality.
By applying the above proposition with

o= [z 20, y= [ 2dutz) e ool
R R

we obtain H(ulp) > 1 (/]R,zdu(z),/Rz2 du(z)) > F(u) .

This ends the proof of theorem 1.



3 Application to the Curie-Weiss model of SOC

In [2], we designed the following model: Let p be a probability measure on R,
which is not the Dirac mass at 0. We consider an infinite triangular array of
real-valued random variables (XX);<j<, such that for all n > 1, (X},..., X")
has the distribution i, ,, where

. 1 (g + -+ a,)? -
dfin,p(T1,. -, Tn) = Z exp <2M Lozt a2 >0 il;[ldp@ci) )

and Z, is the renormalization constant. In [2], [4] and [5], we proved that this
model exhibits a phenomenon of self-organized criticality: for a large class of
symmetric distributions, we proved that the fluctuations of S,, = X} +---+ X
are of order n®/* and the limiting law is C exp(—Az*) dz for some C, X > 0.

For any n > 1, let us introduce the empirical measure
1
My = 1 (0 o+ Oxy).

The inequality of theorem 1 is the key ingredient to prove the following theorem:

Theorem 3. Let p be a symmetric probability measure on R with compact
support and such that p({0}) < 1/y/e. Then, under [i, ,, the sequence (My,),>1
converges weakly in probability to p, i.e., for any continuous function f from R
to R, we have

Ve >0 lim ﬁn,p<‘Mn(f)—/fdp‘>5>:0.
n—oo R

Let us prove this theorem. We suppose that there exists L > 0 such that the
support of pis [~L, L] or | — L, L[. We denote by M the space of all probability
measures on [—L, L] endowed with the topology of weak convergence. Let € > 0
and let f be a continuous function from R to R. The set

Us{uEMf:'AfduAfdp‘<5}

is open in M¥. Let n > 1. We denote by 5,%,, the law of (dy, +---+dy,) /n
when Y7,...,Y, are n independent random variables with distribution p. We
have

_ o 1 =
oMo €US) = 5 [ ex0 (0F(0) Dy 1)

The function F is continuous on M\ {8y}. We extend the definition of F on
MU by putting F (o) = 1/2. This way F is upper semi-continuous. We suppose
next that p({0}) < 1/4/e so that

F(6o) = 1/2 < —=Inp({0}) = H(op)

If p € MI\{6p} then theorem 1 implies that F(u) < H(u|p) with equality if
and only if 4 = p. Hence the function F — H(-|p) has a unique maximum on
ME at p.



Sanov’s theorem (theorem 6.2.10 of [3]) states that (6, ,),>1 satisfies the large
deviation principle in M¥ with speed n and governed by the good rate func-
tion H(-|p). As a consequence

1 1. ~
liminf —1In Z,, > liminf —In#6, ,({00}°) > — 1££ H(plp) =0.
K700

n—+oo n n—+oo n

Since F is bounded (by 1/2) and is upper semi-continuous on M¥, Varadhan’s
lemma (see section 4.3 of [3]) implies that

n—+o00 n—+oo 1 n—+oo N

. 1o c . 1 n e el
limsup - In fiy, , (M, € US) < limsup — In /uc e"F W dg,, ,(u) — liminf = In Z,,

< sup{F(u) — H(ulp) : p €U }.

Since H(-|p) is a good rate function, F is upper semi-continuous and US is a
closed subset of MY which does not contain p, the unique maximum of the
function F — H(-|p), we get

sup { F(u) — H(plp) : p e U} <0.
As a consequence, there exists ¢, > 0 and n. > 1 such that
Vn > ne fin,p (M, € US) < exp(—nc.).

This implies the convergence in theorem 3.
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