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Abstract
We extend the main theorem of [2] about the fluctuations in the Curie-
Weiss model of SOC in the symmetric case. We present a short proof using
the Hubbard-Stratonovich transformation with the self-normalized sum of
the random variables.
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1 Introduction
In [2], Raphaël Cerf and Matthias Gorny designed a Curie-Weiss model of self-
organized criticality. It is the model given by an infinite triangular array of
real-valued random variables (Xk

n)1≤k≤n such that for all n ≥ 1, (X1
n, . . . , X

n
n )

has the distribution

dµ̃n,ρ(x1, . . . , xn) = 1
Zn

exp
(

1
2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi),

where ρ is a probability measure on R which is not the Dirac mass at 0, and
where Zn is the normalization constant. This model is a modification of the
generalized Ising Curie-Weiss model by the implementation of an automatic
control of the inverse temperature.
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For any n ≥ 1, we denote

Sn = X1
n + · · ·+Xn

n , Tn = (X1
n)2 + · · ·+ (Xn

n )2.

By using Cramér’s theory and Laplace’s method, Cerf and Gorny proved in [2]
that, if ρ satisfies

∃v0 > 0
∫
R
ev0z

2
dρ(z) < +∞ (∗)

and if ρ has a bounded density, then

Sn
n3/4

L−→
n→∞

(
4µ4

3σ8

)1/4
Γ
(

1
4

)−1
exp

(
− µ4

12σ8 s
4
)
ds.

The case where ρ is a centered Gaussian measure has been studied in [7]. This
fluctuation result shows that this model is a self-organized model exhibiting
critical behaviour. Indeed it has the same behaviour as the critical generalized
Ising Curie-Weiss model (see [5]) and, by construction, it does not depend on
any external parameter.

This result has been extended in [6] to the case where ρ satisfies some Cramér
condition, which is fulfilled in particular when ρ has a an absolutely continuous
component. However the proof is very technical and it does not deal with the
case where ρ is discrete for example.

In this paper we prove that the convergence in distribution of Sn/n3/4, under
µ̃n,ρ, is true for any symmetric probability measure ρ on R which satisfies (∗).
To this end, we study the fluctuations of the self-normalized sum Sn/

√
Tn. With

this term, it is possible to use the so-called Hubbard-Stratonovich transformation
as in lemma 3.3 of [5], which is the key ingredient for the proof of the fluctuations
theorem in the generalized Ising Curie-Weiss model.
Theorem 1. Let ρ be a symmetric probability measure on R which is not the
Dirac mass at 0 and which has a finite fifth moment. We denote by σ2 the
variance of ρ and by µ4 its fourth moment. Then, under µ̃n,ρ,

Sn

n1/4
√
Tn

L−→
n→∞

(
4µ4

3σ4

)1/4
Γ
(

1
4

)−1
exp

(
− µ4

12σ4 s
4
)
ds.

Remark: the hypothesis that ρ has a fifth moment may certainly be weakened
by assuming instead that

∃ε > 0
∫
R
|z|4+ε dρ(z) < +∞.

There is a huge literature on self-normalized sums that gives very precise
results on ratios like Sn/

√
Tn, in the independent case (see for instance [3]). We

prove theorem 1 in section 2, without requiring any preliminary result.
If we add the hypothesis that ρ satisfies (∗) then, under µ̃n,ρ, Tn/n converges

in probability to σ2. This result is proved in section 3 of [6] using Cramér’s
theorem, Varadhan’s lemma (see [4]) and a conditioning argument. Moreover

∀n ≥ 1 Sn
n3/4 =

√
Tn
n
× Sn

n1/4
√
Tn
,

and condition (∗) implies that ρ has finite moments of all orders. Therefore
the following theorem is a consequence of theorem 1 and Slutsky lemma (theo-
rem 3.9 of [1]).
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Theorem 2. Let ρ be a symmetric probability measure on R which is not the
Dirac mass at 0 and such that

∃v0 > 0
∫
R
ev0z

2
dρ(z) < +∞.

Then, under µ̃n,ρ,

Sn
n3/4

L−→
n→∞

(
4µ4

3σ8

)1/4
Γ
(

1
4

)−1
exp

(
− µ4

12σ8 s
4
)
ds.

Remark: The assumption on the exponential moment of ρ in the previous
theorem is a technical hypothesis and we believe that the result should be true
if ρ 6= δ0 is symmetric and has only a finite fourth moment. Nevertheless the
symmetry of ρ is essential even if ρ has zero mean (see section 11.f. of [8] for the
simple counter-example of a non-symmetric Bernoulli).

2 Proof of theorem 1
Let (Xk

n)1≤k≤n be an infinite triangular array of random variables such that, for
any n ≥ 1, (X1

n, . . . , X
n
n ) has the law µ̃n,ρ. Let us recall that

∀n ≥ 1 Sn = X1
n + · · ·+Xn

n and Tn = (X1
n)2 + · · ·+ (Xn

n )2,

and that Tn > 0 almost surely. We use the Hubbard-Stratonovich transformation:
let W be a random variable with standard normal distribution and which is
independent of (Xk

n)1≤k≤n. Let n ≥ 1 and let f be a bounded continuous
function on R. We put

En = E
[
f

(
W

n1/4 + Sn

n1/4
√
Tn

)]
.

We introduce (Yi)i≥1 a sequence of independent random variables with common
distribution ρ. We denote An = Y1 + · · ·+ Yn and Bn =

√
Y 2

1 + · · ·+ Y 2
n . We

have

En = 1
Zn
√

2π
E

[∫
R
f

(
w

n1/4 + An
n1/4Bn

)
exp

(
1
2
A2
n

B2
n

− w2

2

)
1{B2

n>0} dw

]
.

We make the change of variable z = n−1/4(w +AnB
−1
n ) in the integral and we

get

En = n1/4

Zn
√

2π
E

[
1{B2

n>0}

∫
R
f (z) exp

(
−
√
nz2

2 + zn1/4An
Bn

)
dz

]
.

Let U1, . . . , Un, ε1, . . . , εn be independent random variables such that the distri-
bution of Ui is ρ and the distribution of εi is (δ−1 + δ1)/2, for any i ∈ {1, . . . , n}.
Since ρ is symmetric, the random variables ε1U1, . . . , εnUn are also independent
with common distribution ρ. As a consequence

En = n1/4

Zn
√

2π
E

[
1{B2

n>0}

∫
R
f (z) exp

(
−
√
nz2

2 +
n∑
i=1

zn1/4εiUi
Bn

)
dz

]
.
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For any i ∈ {1, . . . , n}, we denote (in the case where B2
n = U2

1 + · · ·+ U2
n > 0)

∀z ∈ R zi,n = zn1/4Ui√
U2

1 + · · ·+ U2
n

.

By using Fubini’s theorem and the independence of εi, Ui, i ∈ {1, . . . , n}, we
obtain

En = n1/4

Zn
√

2π
E

[
1{B2

n>0}

∫
R
f(z) exp

(
−
√
nz2

2

)

× E

(
n∏
i=1

exp (zi,nεi)

∣∣∣∣∣ (U1, . . . , Un)
)
dz

]
.

= n1/4

Zn
√

2π
E

[
1{B2

n>0}

∫
R
f (z) exp

(
−
√
nz2

2

)
exp

(
n∑
i=1

ln cosh (zi,n)
)
dz

]
.

We define the function g by

∀y ∈ R g(y) = ln cosh y − y2

2 .

It is easy to see that g(y) < 0 for y > 0. We notice that z2
1,n + · · ·+ z2

n,n =
√
nz2

for any z ∈ R, so that

En = n1/4

Zn
√

2π
E

[
1{B2

n>0}

∫
R
f (z) exp

(
n∑
i=1

g(zi,n)
)
dz

]
.

Now we use Laplace’s method. Let us examine the convergence of the term in
the exponential: for any i ∈ {1, . . . , n} and z ∈ R, the Taylor-Lagrange formula
states that there exists a random variable ξi such that

g(zi,n) = −
z4
i,n

12 +
z5
i,n

5! g
(5)(ξi).

By a simple computation, we see that the function g(5) is bounded over R. As a
consequence
n∑
i=1

g(zi,n) = − z
4

12
(Y 4

1 + · · ·+ Y 4
n )/n

((Y 2
1 + · · ·+ Y 2

n )/n)2 + z5 (Y 5
1 + · · ·+ Y 5

n )/n
((Y 2

1 + · · ·+ Y 2
n )/n)5/2 O

(
1

n1/4

)
.

By hypothesis, the distribution ρ has a finite fifth moment. Hence the law of
large numbers implies that

∀z ∈ R
n∑
i=1

g(zi,n) −→
n→+∞

−µ4z
4

12σ4 a.s.

Lemma 3. There exists c > 0 such that

∀z ∈ R ∀n ≥ 1
n∑
i=1

g(zi,n) ≤ − cz4

1 + z2/
√
n
.
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Proof. We define h by

∀y ∈ R\{0} h(y) = 1 + y2

y4 g(y).

It is a negative continuous function on R\{0}. Since g(y) ∼ −y4/12 in the
neighbourhood of 0, the function h can be extended to a function continuous
on R by putting h(0) = −1/12. Next we have

∀y ∈ R\{0} h(y) = 1 + y2

y2 ×
(

ln cosh y
y2 − 1

2

)
,

so that h(y) goes to −1/2 when |y| goes to +∞. Therefore h is bounded by
some constant −c with c > 0. Next we easily check that x 7−→ x2/(1 + x) is
convex on [0,+∞[ so that, for any z ∈ R and n ≥ 1,

n∑
i=1

g(zi,n) ≤ −nc 1
n

n∑
i=1

z4
i,n

1 + z2
i,n

≤ −nc
( 1
n

∑n
i=1 z

2
i,n

)2

1 + 1
n

∑n
i=1 z

2
i,n

= − cz4

1 + z2/
√
n
,

since z2
1,n + · · ·+ z2

n,n =
√
nz2.

If |z| ≤ n1/4 then 1 + z2/
√
n ≤ 2 and thus, by the previous lemma,∣∣∣∣∣1{B2

n>0} 1|z|≤n1/4 exp
(

n∑
i=1

g(zi,n)
)∣∣∣∣∣ ≤ exp

(
−cz

4

2

)
.

Since
E
[∫

R
‖f‖∞ exp

(
−cz

4

2

)
dz

]
< +∞,

the dominated convergence theorem implies that

E

[
1{B2

n>0}

∫
R
1|z|≤n1/4 f (z) exp

(
n∑
i=1

g(zi,n)
)
dz

]

−→
n→+∞

∫
R
f(z) exp

(
−µ4z

4

12σ4

)
dz.

If |z| > n1/4 then 1 + z2/
√
n ≤ 2z2/

√
n and thus, by the previous lemma,∣∣∣∣∣1{B2

n>0} 1|z|>n1/4 exp
(

n∑
i=1

g(zi,n)
)∣∣∣∣∣ ≤ exp

(
−c
√
nz2

2

)
.

Hence

E

[
1{B2

n>0}

∫
R
1|z|>n1/4 f (z) exp

(
n∑
i=1

g(zi,n)
)
dz

]
≤
‖f‖∞

√
2π

n1/4√c
,

and thus

E

[
1{B2

n>0}

∫
R
f (z) exp

(
n∑
i=1

g(zi,n)
)
dz

]
−→

n→+∞

∫
R
f(z) exp

(
−µ4z

2

12σ4

)
dz.
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If we take f = 1, we get

Zn
√

2π
n1/4 −→

n→+∞

∫
R

exp
(
−µ4z

4

12σ4

)
dz.

We have proved that

W

n1/4 + Sn

n1/4
√
Tn

L−→
n→∞

(∫
R

exp
(
−µ4z

4

12σ4

)
dz

)−1

exp
(
− µ4

12σ4 s
4
)
ds.

Since (n−1/4W )n≥1 converges in distribution to 0, Slutsky lemma (theorem 3.9
of [1]) implies that

Sn

n1/4
√
Tn

L−→
n→∞

(∫
R

exp
(
−µ4z

4

12σ4

)
dz

)−1

exp
(
− µ4

12σ4 s
4
)
ds.

By an ultimate change of variables we compute that∫
R

exp
(
−µ4z

4

12σ4

)
dz =

(
3σ4

4µ4

)1/4

Γ
(

1
4

)
.

This ends the proof of theorem 1.
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