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Abstract

We extend the main theorem of [2] about the fluctuations in the Curie-
Weiss model of SOC in the symmetric case. We present a short proof using
the Hubbard-Stratonovich transformation with the self-normalized sum of
the random variables.
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1 Introduction

In [2], Raphaél Cerf and Matthias Gorny designed a Curie-Weiss model of self-
organized criticality. It is the model given by an infinite triangular array of
real-valued random variables (X/)1<k<, such that for all n > 1, (X},..., X")
has the distribution

Tiazyyaz>0 H dp(z;),

i=1

~ 1 L(xg+ - +a,)?
d L1,y Ty) = —€Xp | =—5——

’un7p( ! 71) Z’IL p(2 x%+...+m%
where p is a probability measure on R which is not the Dirac mass at 0, and
where Z,, is the normalization constant. This model is a modification of the
generalized Ising Curie-Weiss model by the implementation of an automatic
control of the inverse temperature.



For any n > 1, we denote
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By using Cramér’s theory and Laplace’s method, Cerf and Gorny proved in [2]
that, if p satisfies
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and if p has a bounded density, then
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The case where p is a centered Gaussian measure has been studied in [7]. This
fluctuation result shows that this model is a self-organized model exhibiting
critical behaviour. Indeed it has the same behaviour as the critical generalized
Ising Curie-Weiss model (see [5]) and, by construction, it does not depend on
any external parameter.

This result has been extended in [6] to the case where p satisfies some Cramér
condition, which is fulfilled in particular when p has a an absolutely continuous
component. However the proof is very technical and it does not deal with the
case where p is discrete for example.

In this paper we prove that the convergence in distribution of S,, /n*/*, under
Hn,p, is true for any symmetric probability measure p on R which satisfies ().
To this end, we study the fluctuations of the self-normalized sum S, /+/T,,. With
this term, it is possible to use the so-called Hubbard-Stratonovich transformation
as in lemma 3.3 of [5], which is the key ingredient for the proof of the fluctuations
theorem in the generalized Ising Curie-Weiss model.
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Theorem 1. Let p be a symmetric probability measure on R which is not the
Dirac mass at 0 and which has a finite fifth moment. We denote by o2 the
variance of p and by g its fourth moment. Then, under [, ,,
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Remark: the hypothesis that p has a fifth moment may certainly be weakened
by assuming instead that
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There is a huge literature on self-normalized sums that gives very precise
results on ratios like S, /v/T,, in the independent case (see for instance [3]). We
prove theorem 1 in section 2, without requiring any preliminary result.

If we add the hypothesis that p satisfies () then, under s, ,, Ty, /n converges
in probability to o2. This result is proved in section 3 of [6] using Cramér’s
theorem, Varadhan’s lemma (see [4]) and a conditioning argument. Moreover
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and condition (x) implies that p has finite moments of all orders. Therefore
the following theorem is a consequence of theorem 1 and Slutsky lemma (theo-
rem 3.9 of [1]).




Theorem 2. Let p be a symmetric probability measure on R which is not the
Dirac mass at 0 and such that
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Then, under [in,,,
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Remark: The assumption on the exponential moment of p in the previous
theorem is a technical hypothesis and we believe that the result should be true
if p # Jg is symmetric and has only a finite fourth moment. Nevertheless the
symmetry of p is essential even if p has zero mean (see section 11.f. of [8] for the
simple counter-example of a non-symmetric Bernoulli).

2 Proof of theorem 1

Let (X%)1<k<n be an infinite triangular array of random variables such that, for
any n > 1, (X},..., X") has the law /i, ,. Let us recall that

vn>1  S,=X'4---4+X" and T,=(X})%4 . +(X")?
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and that T;, > 0 almost surely. We use the Hubbard-Stratonovich transformation:
let W be a random variable with standard normal distribution and which is
independent of (Xﬁ)lgkgn. Let n > 1 and let f be a bounded continuous
function on R. We put
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We introduce (Y;);>1 a sequence of independent random variables with common

distribution p. We denote A, =Y; +---+Y, and B,, = \/Yf +--+Y2 We
have
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We make the change of variable z = n=/4(w + A, B;;!) in the integral and we
get

1/4
E, =

mﬂz ]l{BEL>0}/Rf(Z)eXP < 5 + B,

Let Uy,...,U,,€1,...,e, be independent random variables such that the distri-
bution of U; is p and the distribution of €; is (61 +1)/2, for any i € {1,...,n}.
Since p is symmetric, the random variables Uy, . .., e,U, are also independent
with common distribution p. As a consequence
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For any i € {1,...,n}, we denote (in the case where B2 = UZ +---+ U2 > 0)
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By using Fubini’s theorem and the independence of ¢;,U;, i € {1,...,n}, we

obtain
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We define the function g by
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It is easy to see that g(y) < 0 for y > 0. We notice that 2§, +---+ 22, = \/nz*
for any z € R, so that
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Now we use Laplace’s method. Let us examine the convergence of the term in
the exponential: for any ¢ € {1,...,n} and z € R, the Taylor-Lagrange formula
states that there exists a random variable &; such that
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By a simple computation, we see that the function ¢(® is bounded over R. As a
consequence
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By hypothesis, the distribution p has a finite fifth moment. Hence the law of
large numbers implies that

n 4
[1a2
VzeR E 1 9(zin) Wt T 1207 a.s.
=

Lemma 3. There exists ¢ > 0 such that
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Proof. We define h by
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It is a negative continuous function on R\{0}. Since g(y) ~ —y*/12 in the
neighbourhood of 0, the function h can be extended to a function continuous
on R by putting h(0) = —1/12. Next we have
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so that h(y) goes to —1/2 when |y| goes to +o0o. Therefore h is bounded by

some constant —c with ¢ > 0. Next we easily check that z — 22/(1 + ) is
convex on [0, +00[ so that, for any z € R and n > 1,
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If |z| < n'/* then 1+ 22/\/n < 2 and thus, by the previous lemma,

- 024
Lip2>0p s j<pr/a exp <Z g(zi,n)> <exp <—2> .

i=1

4
E UR £ exp <_C;) dz} < +00,

the dominated convergence theorem implies that
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If |z| > n'/% then 1+ 22/\/n < 222/y/n and thus, by the previous lemma,
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and thus
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If we take f =1, we get
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We have proved that
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Since (n_1/4W)n21 converges in distribution to 0, Slutsky lemma (theorem 3.9
of [1]) implies that
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By an ultimate change of variables we compute that
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This ends the proof of theorem 1.
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