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Abstract
In this paper, we introduce a Markov process whose unique invariant
distribution is the Curie-Weiss model of self-organized criticality (SOC)
we designed and studied in [4]. In the Gaussian case, we prove rigorously
that it is a dynamical model of SOC: the fluctuations of the sum Sn( · )
of the process evolve in a time scale of order

√
n and in a space scale of

order n3/4 and the limiting process is the solution of a "critical" stochastic
differential equation.
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1 Introduction
In [4] and [10], we introduced a Curie-Weiss model of self-organized criticality
(SOC): we transformed the distribution associated to the generalized Ising Curie-
Weiss model by implementing an automatic control of the inverse temperature
which forces the model to evolve towards a critical state. It is the model given
by an infinite triangular array of real-valued random variables (Xk

n)1≤k≤n such
that, for all n ≥ 1, (X1

n, . . . , X
n
n ) has the distribution

1
Zn

exp
(

1
2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi),

where ρ is a probability measure on R which is not the Dirac mass at 0, and
where Zn is the normalization constant. We extended the study of this model
in [11], [12] and [13]. For symmetric distributions satisfying some exponential
moment condition, we proved that the sum Sn of the random variables behaves
as in the typical critical generalized Ising Curie-Weiss model: the fluctuations are
of order n3/4 and the limiting law is C exp(−λx4) dx where C and λ are suitable
positive constants. Moreover, by construction, the model does not depend on any
external parameter. That is why we can conclude it exhibits the phenomenon of
self-organized criticality (SOC). Our motivations for studying such a model are
detailed in [4].
This model describes interacting elements in thermodynamic equilibrium. How-
ever self-organized criticality seems to be a dynamical phenomenon, as is high-
lighted by the archetype of SOC : the sandpile model introduced by Per Bak,
Chao Tang and Kurt Wiesenfeld in their seminal 1987 paper [1]. That is why, in
this paper, we try to design a dynamical Curie-Weiss model of SOC.
We choose to build a dynamical model as a Markov process whose unique
invariant distribution is the law of (a modified version of) the Curie-Weiss model
of SOC. One way of building such a process is to consider the associated Langevin
diffusion (see [16] for example).
The model. Let ϕ be a C2 function from R to R which is even and such that
the function exp(2ϕ) is integrable over R. We suppose that there exists C > 0
such that

∀x ∈ R xϕ′(x) ≤ C(1 + x2).
We denote by ρ the probability measure with density

x 7−→ exp(2ϕ(x))
(∫

R
exp(2ϕ(t)) dt

)−1

with respect to the Lebesgue measure on R. We consider an infinite triangular
array of stochastic processes (Xk

n(t), t ≥ 0)1≤k≤n such that, for all n ≥ 1,(
(X1

n(t), . . . , Xn
n (t)), t ≥ 0

)
is the unique solution of the system of stochastic differential equations:

dXj
n(t) = ϕ′

(
Xj
n(t)

)
dt+ dBj(t)

+1
2

(
Sn(t)

Tn(t) + 1 −X
j
n(t)

(
Sn(t)

Tn(t) + 1

)2)
dt

j ∈ {1, . . . , n},

(Σϕ
n)
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where (B1, . . . , Bn) is a standard n-dimensional Brownian motion and

∀t ≥ 0 Sn(t) = X1
n(t) + · · ·+Xn

n (t), Tn(t) =
(
X1
n(t)

)2 + · · ·+
(
Xn
n (t)

)2
.

In section 2.c), we explain in details why we choose this drift. In this paper, we
only prove a fluctuation theorem for the Gaussian case of this model:

Theorem 1. Let σ2 > 0. Assume that

∀x ∈ R ϕ(x) = − x2

4σ2

and that, for any n ≥ 1, the random variables X1
n(0), . . . , Xn

n (0) are independent
with common distribution ρ = N (0, σ2). We denote (U(t), t ≥ 0) the unique
strong solution of the stochastic differential equation

dz(t) = −z
3(t)
2σ4 dt+ dB(t), z(0) = 0, (Sσ)

where (B(t), t ≥ 0) is a standard Brownian motion. Then, for any T > 0,(
Sn(
√
nt)

n3/4 , 0 ≤ t ≤ T
)

L−→
n→+∞

(
U(t), 0 ≤ t ≤ T

)
,

in the sense of the convergence in distribution on C([0, T ],R).

This theorem suggests that, at least in the Gaussian case, our dynamical model
exhibits self-organized criticality. Indeed it does not depend on any external
parameter and the fluctuations of Sn( · ) are critical: the processes evolve in a
time scale of order

√
n and in a space scale of n3/4 and the limiting process

is the solution of the "critical" stochastic differential equation (Sσ). This is
the same behaviour as in the critical case of the mean-field model studied by
Donald A. Dawson in [7], see section 3.a) for more details.
For any n ≥ 1, we introduce S?n = ξ1

n+ · · ·+ξnn where (ξ1
n, . . . , ξ

n
n) has the density

proportional to

(x1, . . . , xn) 7−→ exp
(

1
2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n + 1 −
x2

1 + · · ·+ x2
n

2σ2

)
with respect to the Lebesgue measure on Rn. In this paper, we also prove the
following commutative diagram of convergences in distribution on R:

Sn(
√
nt)

n3/4

U(t)

S?n
n3/4

√
2
σ

Γ
(

1
4

)−1
exp

(
− s4

4σ4

)
ds

n
→

+
∞

(A4)

n
→

+
∞

(A2)

(A1)

t→ +∞

(A3)
t→ +∞
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In section 2, we present some results on the general case of the model and we
prove the convergences in distribution associated to the arrows (A1), (A2) and
(A3) in the previous diagram. Next, in section 3, we give the strategy for proving
a fluctuation result for our model and we explain that the Gaussian case is
special because it can be analyzed through a two-dimensional problem. Finally
we prove theorem 1 in section 4, i.e., the convergence in distribution associated
to the arrow (A4).

Acknowledgments. The author would like to thank the anonymous referee for
his careful review and useful comments which helped to improve the presentation
of the paper.

2 Results on the general case of the model
In this section, we first give general results on Langevin diffusions. Next we
apply these results to prove existence and uniqueness of the solution of (Sσ) and
(Σϕ

n). We also prove the convergences in distribution associated to the arrows
(A1) and (A3). Finally we give a fluctuation theorem for an alternative version
of the Curie-Weiss model of SOC.

a) Langevin diffusions
Let f be a probability density function on Rn, n ≥ 1. The Langevin diffusion
associated to f is a stochastic process which is constructed so that, in continuous
time, under suitable regularity conditions, it converges to f(x) dx, its unique
invariant distribution.

Theorem 2. Let f be a positive probability density function on Rn, n ≥ 1, such
that lnf is C2. We suppose that there exists K > 0 such that

∀x ∈ Rn 〈∇ lnf(x), x〉 ≤ K(1 + ‖x‖2).

If (B(t), t ≥ 0) is a standard n-dimensional Brownian motion and if ξ is a
random variable in Rn satisfying E

(
‖ξ‖2

)
< +∞, then there exists a unique

strong solution to the stochastic differential equation

dY (t) = 1
2∇ lnf(Y (t)) + dB(t), (Sf )

with initial condition Y (0) = ξ. Moreover (Y (t), t ≥ 0) is a Markov diffusion
process on Rn admitting f(x) dx as unique invariant distribution and

∀x ∈ Rn lim
t→+∞

sup
A∈BRn

∣∣∣∣P(Y (t) ∈ A
∣∣Y (0) = x

)
−
∫
A

f(z) dz
∣∣∣∣ = 0.

Proof. Theorems 3.7 and 3.11 of chapter 5 of [9] imply that there exists a
unique strong solution to (Sf ) with initial condition ξ, that its sample path is
continuous and that it is a solution of the martingale problem for (Af , ξ), where

∀g ∈ C2(Rn) Afg = 1
2

n∑
i=1

∂2g

∂x2
i

+
n∑
i=1

(
1
2
∂(lnf)
∂xi

)
∂g

∂xi
.
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Next, theorems 4.1 and 4.2 of chapter 4 of [9] imply that it is a Markov process
and that its generator is (Af , D(Af )) with C∞c (Rn) ⊂ D(Af ). Finally theo-
rem 2.1 of [16] gives us the uniqueness of the invariant distribution and the total
variation norm convergence.

Notice that this theorem is true if we remove the hypothesis that ξ has a finite
second order moment, but the solution to (Sf ) would be weak (see theorem 3.10
of chapter 5 of [9]).

b) Solution of (Sσ)
Theorem 2 implies that (Sσ) admits a unique strong solution (U(t), t ≥ 0) which
is a Markov process whose unique invariant distribution is

√
2
σ

Γ
(

1
4

)−1
exp

(
− s4

4σ4

)
ds.

Moreover

lim
t→+∞

sup
A∈BR

∣∣∣∣∣P(U(t) ∈ A
)
−
√

2
σ

Γ
(

1
4

)−1 ∫
A

exp
(
− s4

4σ4

)
ds

∣∣∣∣∣ = 0.

This is the convergence in distribution associated to the arrow (A3) in the
diagram on page 3.

c) Solution of (Σϕ
n)

In this subsection, we prove that (Σϕ
n) has a unique strong solution and that

the convergence in distribution associated to (A1) is true.

Let us define µ̃?n,ρ, the probability measure with density

f?n,ρ : y ∈ Rn 7−→ 1
Z?n

exp
(

1
2

(y1 + · · ·+ yn)2

y2
1 + · · ·+ y2

n + 1 + 2
n∑
i=1

ϕ(yi)
)

(1)

with respect to the Lebesgue measure on Rn, where Z?n is a normalization
constant. Let us prove that (Σϕ

n) admits a unique solution. For any y ∈ Rn, we
denote

Sn[y] = y1 + · · ·+ yn, Tn[y] = y2
1 + · · ·+ y2

n

and we notice that, for any j ∈ {1, . . . , n},

∂

∂yj

(
1
2

(Sn[y])2

Tn[y] + 1 + 2
n∑
i=1

ϕ(yi)
)

= Sn[y]
Tn[y] + 1 − yj

(
Sn[y]

Tn[y] + 1

)2
+ 2ϕ′(yj).

Therefore the system (Σϕ
n) can be rewritten

dXn(t) = 1
2∇ lnf?n,ρ(Xn(t)) + dB(t),

where B = (B1, . . . , Bn). As a consequence, the solution of (Σϕ
n) (if it exists) is

the Langevin diffusion associated to f?n,ρ.
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Let us introduce the operator Ln on C2(Rn) such that, for any f ∈ C2(Rn) and
y ∈ Rn,

Lnf(y) = 1
2

n∑
j=1

∂2f(y)
∂y2

j

+
n∑
j=1

(
1
2

Sn[y]
Tn[y] + 1 −

yj
2

(
Sn[y]

Tn[y] + 1

)2
+ ϕ′(yj)

)
∂f(y)
∂yj

.

Theorem 3. For any n ≥ 1, there exists a unique strong solution(
Xn(t), t ≥ 0

)
=
(
(X1

n(t), . . . , Xn
n (t)), t ≥ 0

)
to the system (Σϕ

n) with initial condition Xn(0) having a finite second moment.
Moreover it is a Markov diffusion process on Rn with infinitesimal generator
(Ln, D(Ln)), where C∞c (Rn) ⊂ D(Ln), and whose unique invariant distribution
is µ̃?n,ρ. Finally

∀x ∈ Rn lim
t→+∞

sup
A∈BRn

∣∣P(Xn(t) ∈ A
∣∣Xn(0) = x

)
− µ̃?n,ρ(A)

∣∣ = 0.

If we take ϕ(x) = −x2/(4σ2) for any x ∈ R, then theorem 3 proves the conver-
gence in distribution associated to the arrow (A1) in the diagram on page 3.

Proof. Let n ≥ 1. By hypothesis, there exists C > 0 such that

∀x ∈ R xϕ′(x) ≤ C(1 + x2).

Moreover ϕ is C2 on R thus the function lnf?n,ρ is C2 on Rn. For any x ∈ Rn,
we have

〈∇ lnf?n,ρ(x), x〉 =
n∑
j=1

xj
∂

∂xj

(
1
2

(Sn[x])2

Tn[x] + 1 + 2
n∑
i=1

ϕ(xi)
)

=
n∑
j=1

xj

(
Sn[x]

Tn[x] + 1 − xj
(

Sn[x]
Tn[x] + 1

)2
+ 2ϕ′(xj)

)

= (Sn[x])2

Tn[x] + 1 −
Tn[x](Sn[x])2

(Tn[x] + 1)2 + 2
n∑
j=1

xjϕ
′(xj)

≤ (Sn[x])2

(Tn[x] + 1)2 + 2C(n+ ‖x‖2).

Next the convexity of t 7−→ t2 on R implies that

∀y ∈ Rn
(Sn[y])2

(Tn[y] + 1)2 ≤
nTn[y]

(Tn[y] + 1)2 ≤ n,

since Tn[·] ≤ (Tn[·] + 1)2. Therefore f?n,ρ satisfies the hypothesis of theorem 2
and theorem 3 follows.

Remark: we have chosen to built our dynamical model so that µ̃?n,ρ is its unique
invariant distribution. It is an alternative version of the Curie-Weiss model we
designed in [4], given by the distribution

dµ̃n,ρ(x1, . . . , xn) = 1
Zn

exp
(

1
2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

+ 2
n∑
i=1

ϕ(xi)
)
dx1 · · · dxn,
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where Zn is a normalization constant. If we want to built the Langevin diffusion
associated to the density of µ̃n,ρ, we obtain the system of stochastic differential
equations

dXj
n(t) = ϕ′

(
Xj
n(t)

)
dt+ dBj(t) + 1

2

(
Sn(t)
Tn(t) −X

j
n(t)

(
Sn(t)
Tn(t)

)2
)
dt,

j ∈ {1, . . . , n}.

In this case, the interaction function is not Lipschitz and we have to check first
that Tn(t) 6= 0 for any t ≥ 0: this would create technical difficulties to prove
existence and uniqueness of a solution. In the next section, we give some results
on the alternative version of the Curie-Weiss model of SOC (the model defined
by the probability measure µ̃?n,ρ – see formula (1)).

d) The alternative Curie-Weiss model of SOC
Let ρ be a probability measure on R. We consider an infinite triangular array of
real-valued random variables (ξkn)1≤k≤n such that for all n ≥ 1, (ξ1

n, . . . , ξ
n
n) has

the distribution

dµ̃?n,ρ(x1, . . . , xn) = 1
Z?n

exp
(

1
2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n + 1

) n∏
i=1

dρ(xi), (2)

where Z?n in the normalization constant. We define S?n = ξ1
n + · · ·+ ξnn .

We obtain the same fluctuation theorem as in [11]. We only present the case
where ρ has a density:

Theorem 4. Let ρ be a probability measure having an even density with respect
to the Lebesgue measure on R and such that

∃v0 > 0
∫
R
ev0z

2
dρ(z) < +∞.

If σ2 denotes the variance of ρ and µ4 its fourth moment then, under µ̃?n,ρ,

S?n
n3/4

L−→
n→∞

(
4µ4

3σ8

)1/4
Γ
(

1
4

)−1
exp

(
−µ4s

4

12σ8

)
ds.

The proof of this theorem is given in section 18.b) of [12]. It is an adaptation of
the proof of theorem 1 of [11], which consists in replacing the function F by the
function (x, y) 7−→ x2/(2y + 2/n).

If we take ϕ(x) = −x2/(4σ2) for any x ∈ R, then theorem 4 implies the
convergence in distribution associated to the arrow (A2) in the diagram on
page 3.
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3 Strategy of proof
In this section, we first explain that the main ingredient for proving a fluctuation
theorem for our dynamical model (in the case of a general function) will be
the study of its associated empirical process. Next we will focus only on the
Gaussian case, i.e., when ϕ : x 7−→ −x2/(4σ2) for some σ2 > 0. Indeed we will
see that the Gaussian case can be handled by studying the convergence of the
process ((

Sn(
√
nt)

n3/4 , n1/4
(
Tn(
√
nt)

n
− σ2

))
, t ≥ 0

)
.

We compute the generator of this process in subsection b). Finally we give the
sketch of proof of theorem 1 in subsection c).

a) The empirical process
Let ϕ be such that Σϕ

n has a unique strong solution
(
(X1

n(t), . . . , Xn
n (t)), t ≥ 0

)
.

As in the equilibrium case (i.e., the alternative Curie-Weiss model defined in
formula (1) or (2)), we would like to study the process (Sn, Tn). However it is
not Markov a priori, contrary to the empirical measure process Mn. It is the
process taking its values onM1(R) and defined by

∀t ≥ 0 ∀A ∈ BR Mn(t, A) = 1
n

n∑
k=1

δXkn(t)(A) = 1
n

n∑
k=1

1A
(
Xk
n(t)

)
,

where
(
(X1

n(t), . . . , Xn
n (t)), t ≥ 0

)
is the unique solution of (Σϕ

n).

Lemma 5. If the distribution of Xn(0) is invariant under permutation of
coordinates, then (Mn(t, ·), t ≥ 0) is a Markov diffusion process onM1(R).

This lemma has a similar proof than lemma 2.3.1 of the article [7] – a paper by
Donald A. Dawson about a mean-field model of cooperative behaviour. Dawson’s
model is defined through a Markov process which is solution of a system of
stochastic differential equations. This process depends on two parameters and
Dawson proves the existence of a critical curve in the space of the parameters.
The critical fluctuations of the empirical measure process Mn( · ) evolve in a
time scale of order

√
n and in a space scale of order n3/4. We believe that our

dynamical model has the same asymptotic behavior for the following reasons:
? The invariant distribution of Dawson’s process is a particular case of the law
of the generalized Ising Curie-Weiss model, defined in [8].
? The alternative Curie-Weiss model of SOC, defined in formula (1) or (2), has
the same asymptotic behavior as the critical generalized Ising Curie-Weiss model
(see theorem 4).
? The invariant distribution of our dynamical model is the law of the alternative
Curie-Weiss model (see theorem 3).

Let n ≥ 1. As in Dawson’s paper, we define the process Un by

∀t ≥ 0 ∀A ∈ BR Un(t, A) = n1/4
(
Mn(
√
nt,A)−

∫
A

dρ(x)
)
.

It takes its values onM±(R), the space of signed measures on R.
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The convergence of a sequence of Markov processes can be proved through
the convergence of the sequence of their generators. Let us denote by Gn the
infinitesimal generator of Un. Let f and Φ belong to C2(R). We assume that Φ
is ρ-integrable. We have

∀t ≥ 0 Gnf

(∫
R

Φ(z)Un(t, dz)
)

=
√
nLnFf,Φ

(
X1
n(t), . . . , Xn

n (t)
)

where

Ff,Φ : x ∈ Rn 7−→ f

(
n1/4

(
1
n

n∑
k=1

Φ(xk)−
∫
R

Φ(z) dρ(z)
))

.

If Φ : z 7−→ z then, for any i ∈ {1, . . . , n} and x ∈ Rn,

∂Ff,Φ
∂xi

(x) = 1
n3/4Ff ′,Φ(x) and ∂2Ff,Φ

∂x2
i

(x) = 1
n3/2Ff ′′,Φ(x).

If Φ : z 7−→ z2 then, for any i ∈ {1, . . . , n} and x ∈ Rn,

∂Ff,Φ
∂xi

(x) = 2xi
n3/4Ff ′,Φ(x) and ∂2Ff,Φ

∂x2
i

(x) = 4x2
i

n3/2Ff ′′,Φ(x) + 2
n3/4Ff ′,Φ(x).

In both cases, if we suppose that ϕ : z 7−→ −z2/(4σ2), then we notice that,
for any x ∈ Rn, the term LnFf,Φ(x) only depends on n, Sn[x] and Tn[x]. This
suggests that, in the Gaussian case, in order to prove the convergence of the
process

(
Sn(
√
nt)/n3/4, t ≥ 0

)
, we can turn the study of Un (which is a problem

in infinite dimensions) into a problem in only two dimensions. Indeed, we
introduce the processes S̃n and T̃n defined by

∀t ≥ 0 S̃n(t) = Sn(
√
nt)

n3/4 =
∫
R
z Un(t, dz)

and
∀t ≥ 0 T̃n(t) = n1/4

(
Tn(
√
nt)

n
− σ2

)
=
∫
R
z2 Un(t, dz).

In the rest of the paper, we suppose that ϕ(x) = −x2/(4σ2) for any x ∈ R.

b) Generator of (S̃n, T̃ n) in the Gaussian case
Let n ≥ 1 and f ∈ C2(R2). Let us define Ψf on Rn by

∀x ∈ Rn Ψf (x) = f

(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)
.

Proposition 6. For any n ≥ 1 and f ∈ C2(R2), we have

∀t ≥ 0
√
nLnΨf

(
X1
n(t), . . . , Xn

n (t)
)

= G̃nf
(
S̃n(t), T̃n(t)

)
,

where, for any (x, y) ∈ R2,

G̃nf(x, y) = −
√
ny

σ2
∂f

∂y
(x, y)− n1/4xy

2σ4
∂f

∂x
(x, y)

+ 1
2σ6

(
xy2 − x3σ2) ∂f

∂x
(x, y) + 1

2
∂2f

∂x2 (x, y) + 2σ2 ∂
2f

∂y2 (x, y) +Rfn(x, y)
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with

Rfn(x, y) = ∂f

∂x
(x, y)R(1)

n (x, y) + ∂f

∂y
(x, y)R(2)

n (x, y)

+ 2x
n1/4

∂2f

∂x∂y
(x, y) + 2y

n1/4
∂2f

∂y2 (x, y),

where (R(1)
n )n≥1 and (R(2)

n )n≥1 are sequences of functions from R2 to R verifying

∀k > 0 lim
n→+∞

sup
(x,y)∈R2

‖(x,y)‖≤k

max
(
|R(1)
n (x, y)| , |R(2)

n (x, y)|
)

= 0.

Proof. Let us define Ψf on Rn by

∀x ∈ Rn Ψf (x) = f

(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)
.

Let x ∈ Rn. For any i ∈ {1, . . . , n}, we have
∂Ψf (x)
∂yj

= 1
n3/4

∂f

∂x
( · · · ) + 2xj

n3/4
∂f

∂y
( · · · ),

∂2Ψf (x)
∂y2

j

= 1
n3/2

∂2f

∂x2 ( · · · ) + 4xj
n3/2

∂2f

∂x∂y
( · · · ) +

4x2
j

n3/2
∂2f

∂y2 ( · · · ) + 2
n3/4

∂f

∂y
( · · · ),

where we write

( · · · ) instead of
(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)

in order to simplify the notations. We have then

LnΨf (x) = 1
2

n∑
j=1

[
∂2Ψf (x)
∂x2

j

+
(

Sn[x]
Tn[x] + 1 − xj

(
Sn[x]

Tn[x] + 1

)2
− xj
σ2

)
∂Ψf (x)
∂xj

]

= 1
2
√
n

∂2f

∂x2 ( · · · ) + 2Sn[x]
n3/2

∂2f

∂x∂y
( · · · ) + 2Tn[x]

n3/2
∂2f

∂y2 ( · · · )

+ 1
2

(
n1/4Sn[x]
1 + Tn[x] −

S3
n[x]

n3/4(1 + Tn[x])2 −
Sn[x]
n3/4σ2

)
∂f

∂x
( · · · )

+
(
n1/4 + S2

n[x]
n3/4(1 + Tn[x])2 −

Tn[x]
n3/4σ2

)
∂f

∂y
( · · · ).

We obtain that
√
nLnΨf (x) = G̃nf

(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)
,

where G̃nf is defined on R2 by

∀(x, y) ∈ R2 G̃nf(x, y) = 2x
n1/4

∂2f

∂x∂y
(x, y) +

(
2y
n1/4 + 2σ2

)
∂2f

∂y2 (x, y)

+ 1
2
∂2f

∂x2 (x, y) +
(
−
√
nx

2σ2 (1− hn(y))− x3

2σ4hn(y)2
)
∂f

∂x
(x, y)

+
(
−
√
ny

σ2 + x2

n3/4σ4hn(y)2
)
∂f

∂y
(x, y),

10



with

hn : y ∈ ]− σ2n1/4,+∞[ 7−→
(

1 + y

n1/4σ2 + 1
nσ2

)−1
.

We introduce the functions ε(1)
n and ε(2)

n such that

∀y > −σ2n1/4 hn(y) = 1− y

n1/4σ2 + y2
√
nσ4 + 1√

n
ε(1)
n (y)

and ε(2)
n (y) = hn(y)2− 1. We obtain the formula of G̃nf given in the proposition

with

R(1)
n : (x, y) 7−→ x

2σ2 ε
(1)
n (y)− x3

2σ4 ε
(2)
n (y) and R(2)

n : (x, y) 7−→ x2hn(y)2

n3/4σ2 .

It is easy to see that (R(1)
n )n≥1 and (R(2)

n )n≥1 are sequences of functions which
converge to 0 uniformly over any compact set in R2.

c) Sketch of proof of theorem 1
Let us denote by Gσ the infinitesimal generator of the Markov process which is
solution of (Sσ). It is defined by

∀f ∈ C2(R) ∀x ∈ R Gσf(x) = 1
2f
′′(x)− x3

2σ4 f
′(x)

Let n ≥ 1 and f ∈ C2(R). By abuse of notation, we also write f for the function
(x, y) ∈ R2 7−→ f(x). The essential ingredient for the proof of theorem 1 is the
introduction of a suitable martingale problem. By Itô’s formula (see [17]), we
prove that

f
(
S̃n(t)

)
= f

(
S̃n(0)

)
+
∫ t

0
G̃nf

(
S̃n(s)

)
ds+Mn,f (t),

whereMn,f is a local martingale. By proposition 6, we have

G̃nf
(
S̃n
)

=
(
−n

1/4S̃nT̃n
2σ4 + S̃nT̃

2
n

2σ6

)
f ′
(
S̃n
)

︸ ︷︷ ︸
Ãf

(
S̃n,T̃n

)
+Gσf

(
S̃n
)

+ f ′
(
S̃n
)
R(1)
n

(
S̃n, T̃n

)

where (R(1)
n )n≥1 is a sequence of functions which converges to 0 uniformly over

any compact set in R2.

Step 1: We notice that the term Ãf
(
S̃n, T̃n

)
does not converge a priori. To

solve this problem, we introduce a perturbation: we transform the function f
into a function Fn,f which converges to f as n goes to ∞, and which satisfies

G̃nFn,f
(
S̃n, T̃n

)
= Gσf

(
S̃n
)

+ a remainder.

Notice that the perturbation theory and methodology was first introduced in [15].

Step 2: For any k ≥ 1, we define the stopping time τkn as the first exit
time of a path of

(
S̃n, T̃n

)
from the domain [−k, k]2, and we prove that

11



Mk
n,f =Mn,f ( · ∧ τkn ∧ T ) is a martingale which is bounded over L2, for any

T > 0 and k ≥ 1.

Step 3: We prove that P(τkn ≤ T ), the probability that a path of
(
S̃n, T̃n

)
exits

[−k, k]2 before the time T , goes to 0 when n and k goes to +∞. We also use
the concept of collapsing processes (see appendix) in order to prove that the
sequence of processes

(
T̃n(t), t ≥ 0

)
n≥1 converges to 0 in the following sense:

∀η > 0 lim
n→+∞

P
(

sup
0≤t≤T

∣∣T̃n(t)
∣∣ > η

)
= 0.

Step 4: We prove that the sequence (S̃n(t), t ≥ 0)n≥1 is tight in the Skorokhod
space D([0, T ],R).

Step 5: We deduce from the previous steps that there exists a subsequence(
S̃mn

)
n≥1 which converges in distribution to some process U on D([0, T ],R).

We prove then that, for any k ≥ 1 and t ∈ [0, T ],

Mk
mn,f (t) L−→

n→+∞
Mf (t) = f(U(t ∧ T ))− f(U(0))−

∫ t∧T

0
Gσf(U(s)) ds,

and thatMf is a martingale. As a consequence U is uniquely determined as
the unique solution of the martingale problem associated to Gσ. We conclude
that U is the solution of (Sσ) and that

(
S̃n
)
n≥1 converges in distribution to U

on D([0, T ],R), and thus on C([0, T ],R).

These steps are developed in detail in the next section.

4 Proof of theorem 1
Step 1: Perturbation

Let f ∈ C2(R). We want to find functions Hf and Kf defined on R2 such that

Fn,f : (x, y) 7−→ f(x) + 1
n1/4Hf (x, y) + 1√

n
Kf (x, y),

satisfies
G̃nFn,f = Gσf + R̃n,f ,

where R̃n,f is a remainder term. Let us find necessary conditions. We suppose
that we have built Hf and Kf and we assume that they are C2. We have then,
for any (x, y) ∈ R2,

G̃nFn,f (x, y) = n1/4
(
− y

σ2
∂Hf

∂y
(x, y)− xy

2σ4 f
′(x)

)
− y

σ2
∂Kf

∂y
(x, y)

− xy

2σ4
∂Hf

∂x
(x, y) + 1

2σ6

(
xy2 − x3σ2) f ′(x) + 1

2f
′′(x) + a remainder .

The function Hf should verify

∀(x, y) ∈ R2 − y

σ2
∂Hf

∂y
(x, y)− xy

2σ4 f
′(x) = 0.

12



We choose
Hf : (x, y) 7−→ − xy

2σ2 f
′(x).

Therefore the function Kf should satisfy, for all (x, y) ∈ R2,

G̃nFn,f (x, y) = − y

σ2
∂Kf

∂y
(x, y) + xy2

4σ6 (f ′(x) + xf ′′(x))

+ 1
2σ6

(
xy2 − x3σ2) f ′(x) + 1

2f
′′(x) + the remainder

= − y

σ2
∂Kf

∂y
(x, y) + xy2

4σ6 (3f ′(x) + xf ′′(x))

− x3

2σ4 f
′(x) + 1

2f
′′(x) + the remainder .

So that the variable y disappears in the leading term of G̃nFn,f (x, y), the function
Kf should verify

∀(x, y) ∈ R2 − y

σ2
∂Kf

∂y
(x, y) + xy2

4σ6 (3f ′(x) + xf ′′(x)) = 0.

We choose
Kf : (x, y) 7−→ xy2

8σ4 (3f ′(x) + xf ′′(x)).

It is easy to see that these choices for Hf and Kf are sufficient for the variable y
to disappear in the leading term of G̃nFn,f (x, y). The remainder term is then

R̃n,f = Rfn + 1
n1/4R

Hf
n + 1√

n
R
Kf
n .

We notice that, so that the above computations are possible, it is necessary that
f is C4. Indeed, the first four derivatives of f appear in the remainder term.
We also remark that, if f ∈ C4(R), then the functions Hf , Kf and their first
and second derivatives are bounded over any compact set in R2. Finally let us
recall that (R(1)

n )n≥1 and (R(2)
n )n≥1 are sequences of functions which converge

to 0 when n goes to +∞, uniformly over any compact set. As a consequence we
have the following proposition:

Proposition 7. Let n ≥ 1 and f ∈ C4(R). We define Hf and Kf on R2 by

∀(x, y) ∈ R2 Hf (x, y) = − xy

2σ2 f
′(x), Kf (x, y) = xy2

8σ4 (3f ′(x) + xf ′′(x)).

Then the function

Fn,f : (x, y) 7−→ f(x) + 1
n1/4Hf (x, y) + 1√

n
Kf (x, y),

verifies G̃nFn,f = Gσf + R̃n,f , with R̃n,f a remainder term satisfying

∀k > 0 lim
n→+∞

sup
(x,y)∈R2

‖(x,y)‖≤k

∣∣∣R̃n,f (x, y)
∣∣∣ = 0.

13



Step 2: Introduction of a martingale problem

We give ourselves n ≥ 1 and f ∈ C4(R). For any t ≥ 0, we have

f

(
Sn(
√
nt)

n3/4

)
= f

(
S̃n(t)

)
=
(
Fn,f −

1
n1/4Hf −

1√
n
Kf

)(
S̃n(t), T̃n(t)

)
.

We define the process (Mn,f (t), t ≥ 0) by

∀t ≥ 0 Mn,f (t) = Fn,f
(
S̃n(t), T̃n(t)

)
− Fn,f

(
S̃n(0), T̃n(0)

)
−
∫ t

0
G̃nFn,f

(
S̃n(s), T̃n(s)

)
ds.

By applying Itô’s formula to the function

Ψn,f : (x1, . . . , xn) ∈ Rn 7−→ Fn,f

(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)
,

we obtain

∀t ≥ 0 Mn,f (t) = n1/4
n∑
j=1

∫ t

0

∂Ψn,f

∂xj

(
Xn(
√
ns)
)
dBj(s).

It is a local martingale and

∀t ≥ 0 〈Mn,f ,Mn,f 〉t =
√
n

n∑
j=1

∫ t

0

(
∂Ψn,f

∂xj

)2 (
Xn(
√
ns)
)
ds.

For any k > 0, we introduce the stopping time τkn defined by

τkn = inf
t≥0

{ ∣∣S̃n(t)
∣∣ ≥ k or

∣∣T̃n(t)
∣∣ ≥ k}.

Let T > 0. We denoteMk
n,f (t) =Mn,f (t ∧ τkn ∧ T ) for any t ≥ 0.

Lemma 8. For all k ≥ 1, n ≥ 1 and f ∈ C4(R), the process Mk
n,f is a

martingale which is bounded over L2. Moreover

∀t ≥ 0 sup
n≥1

E
(
Mk

n,f (t)2) < +∞.

Proof. For any t ≥ 0, we have

〈Mk
n,f ,Mk

n,f 〉t =
√
n

n∑
j=1

∫ t∧τkn∧T

0

(
∂Ψn,f

∂xj

)2 (
Xn(
√
ns)
)
ds.

Moreover, for all i ∈ {1, . . . , n} and x ∈ Rn,

∂Ψn,f

∂xi
(x) = 1

n3/4 f
′
(
Sn[x]
n3/4

)
+ 1
n3/4

(
1

n1/4
∂Hf

∂x
+ 1
n1/2

∂Kf

∂x

)(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)

+ 2xi
n3/4

(
1

n1/4
∂Hf

∂y
+ 1
n1/2

∂Kf

∂y

)(
Sn[x]
n3/4 ,

Tn[x]
n3/4 − n

1/4σ2
)
.

(3)
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By squaring these terms and by summing over all i ∈ {1, . . . , n}, we observe that
there exists a constant Ckf > 0 such that, for all x ∈ Rn verifying∣∣∣∣Sn[x]

n3/4

∣∣∣∣ < k and
∣∣∣∣Tn[x]
n3/4 − n

1/4σ2
∣∣∣∣ < k,

we have
n∑
j=1

(
∂Ψn,f

∂xj

)2
≤
Ckf√
n
.

As a consequence, for any t ≥ 0,

sup
n≥1

E
(
〈Mk

n,f ,Mk
n,f 〉t

)
≤ Ckf T.

Therefore, for any n ≥ 1, the process Mk
n,f is a martingale bounded over L2

(see theorem 4.8 of [14]) and

∀t ≥ 0 E
(
Mk

n,f (t)2) = E
(
〈Mk

n,f ,Mk
n,f 〉t

)
≤ Ckf T.

This ends the proof of the lemma.

Step 3: Study of the asymptotic behavior (τkn)n≥1

Lemma 9. For any ε > 0, there exist nε ≥ 1 and kε ≥ 1 such that

sup
n≥nε

P
(
τkεn ≤ T

)
≤ ε.

Moreover the process
(
T̃n(t), t ≥ 0

)
n≥1 collapses to zero, i.e.,

∀η > 0 lim
n→+∞

P
(

sup
0≤t≤T

∣∣T̃n(t)
∣∣ > η

)
= 0.

Proof. Let k, ε > 0 and n ≥ 1. We have

P
(
τkn ≤ T

)
≤ P

(
sup

0≤t≤T∧τkn

∣∣T̃n(t)
∣∣ ≥ k

2

)
+ P

(
sup

0≤t≤T∧τkn

∣∣S̃n(t)
∣∣ ≥ k

2

)
.

We denote P(Akn) + P(Bkn) the sum in the right side of this inequality.

Let us deal with the bound of P(Akn). To this end we would like to apply
proposition A.2 in appendix to the positive semimartingale (ξn(t), t ≥ 0)n≥1
defined by

∀n ≥ 1 ∀t ≥ 0 ξn(t) = T̃n(t)2.

By applying Itô’s formula, we get

dξn(t) = G̃nf0
(
S̃n(t), T̃n(t)

)
dt+ n1/4

n∑
i=1

4Xi
n(
√
nt)

n3/4 T̃n(t) dBi(t),
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with f0 : (x, y) 7−→ y2. With the notations of proposition A.2, we have
ζn(t) = G̃nf0

(
S̃n(t), T̃n(t)

)
and Zn,i(t) = 4n−1/2Xi

n(
√
nt) T̃n(t) for all t ≥ 0,

n ≥ 1 and i ∈ {1, . . . , n}. We have

∀n ≥ 1 ∀t ∈ [0, τkn ]
n∑
i=1

Zn,i(t)2 = 16 T̃n(t)2 1
n

n∑
i=1

Xi
n(
√
nt)2

= 16 T̃n(t)2
(
σ2 + T̃n(t)

n1/4

)
.

Hence condition (C4) of proposition A.2 is verified with C5 = 16k2(σ2 +k). Next,
by proposition 6, for any n ≥ 1 and t ∈ [0, τkn ]

ζn(t) = −2
√
n

σ2 T̃n(t)2 + 4σ2 + 2 T̃n(t)R(2)
n (S̃n(t), T̃n(t)) + 4

n1/4 T̃n(t)

≤ −2
√
n

σ2 ξn(t) + 4σ2 + 2k sup
‖(x,y)‖≤k

∣∣∣R(2)
n (x, y)

∣∣∣+ 4k
n1/4 .

Condition (C3) is then verified with κn =
√
n for any n ≥ 1, C2 = 2/σ2,

C4 = 4σ2 + 2k sup
n≥1

sup
‖(x,y)‖≤k

∣∣∣R(2)
n (x, y)

∣∣∣+ 4k < +∞

and C3, (βn)n≥1 may be chosen arbitrarily. We choose (βn)n≥1 such that βn/κn
goes to 0 when n goes to +∞.
Let us examine condition (C2): we denote Y in =

(
Xi
n(0)

)2 − σ2 for any
i ∈ {1, . . . , n}. Since X1

n(0), . . . , Xn
n (0) are independent random variables with

common distribution N (0, σ2), we get that Y 1
n , . . . , Y

n
n are independent identi-

cally distributed random variables which are centered and have finite moments
of all orders. Theorem 2 of [3] implies that, for any v ≥ 2, there exists Kv > 0
such that

∀n ≥ 1 E
(∣∣∣Y 1

n + · · ·+ Y nn
∣∣v) ≤ Kvn

v/2.

Hence, for all d > 1 and n ≥ 1,

E
[(
ξn(0)

)d]
= E

[(
1

n3/4

(
Y 1
n + · · ·+ Y nn

))2d
]
≤ K2d

nd

n3d/2 = K2d n
−d/2.

Condition (C2) is then satisfied for any d > 1, with C1 = K2d and αn ≤
√
n for

all n ≥ 1. So that condition (C1) is verified, we choose d > 2 and αn = n1/4 for
all n ≥ 1. We have

κ
1
d
nα
−1
n ∨ αnκ−1

n = n1/(2d)−1/4 ∨ n−1/4 = n1/(2d)−1/4.

As a consequence, proposition A.2 implies that there exist M > 0 and n1 ≥ 1
such that

sup
n≥n1

P

(
sup

0≤t≤T∧τkn

∣∣T̃n(t)
∣∣2 > Mn1/(2d)−1/4

)
≤ ε

2 . (4)

We increase the value of n1 so that

sup
n≥n1

P

(
sup

0≤t≤T∧τkn

∣∣T̃n(t)
∣∣2 > k

2

)
≤ ε

2 .
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Let us deal now with the term P(Bkn). In the rest of this proof, we assume that
f is the function (x, y) 7−→ x2. We have

∀n ≥ 1 S̃n(t)2 = Fn,f
(
S̃n(t), T̃n(t)

)
+ S̃n(t)2 T̃n(t)

n1/4σ2 − S̃n(t)2 T̃n(t)2
√
nσ4 ,

thus

∀n ≥ 1 Fn,f
(
S̃n(t), T̃n(t)

)
= S̃n(t)2

(
1− T̃n(t)

n1/4σ2 + T̃n(t)2
√
nσ4

)
.

We obtain that, for n large enough,

P(Bkn) = P

(
sup

0≤t≤T∧τkn

∣∣S̃n(t)
∣∣2 > k2

4

)

≤ P

(
sup

0≤t≤T∧τkn
Fn,f

(
S̃n(t), T̃n(t)

)
>
k2

8

)

≤ P
(
Fn,f

(
S̃n(0), T̃n(0)

)
>
k2

24

)
+ P

(
sup

0≤t≤T∧τkn
Mn,f (t) > k2

24

)

+ P

(
sup

0≤t≤T∧τkn
G̃nFn,f

(
S̃n(t), T̃n(t)

)
>

k2

24T

)
.

For any n ≥ 1, the random variables X1
n(0), . . . , Xn

n (0) are independent with
common distribution N (0, σ2) thus, by the Central Limit Theorem, we get
(S̃n(0))n≥1 and (T̃n(0))n≥1 converge in distribution to 0. This implies that, for n
large enough,

P
(
Fn,f

(
S̃n(0), T̃n(0)

)
>
k2

24

)
≤ ε

6 .

Next proposition 7 gives us

G̃nFn,f
(
S̃n(t), T̃n(t)

)
= 1− S̃n(t)4

σ4 + R̃n,f
(
S̃n(t), T̃n(t)

)
≤ 1 +

∣∣∣R̃n,f(S̃n(t), T̃n(t)
)∣∣∣ .

and
lim

n→+∞
sup

‖(u,v)‖≤k
|R̃n,f (u, v)| = 0.

If we choose k >
√

24T and n large enough, then

P

(
sup

0≤t≤T∧τkn
G̃nFn,f

(
S̃n(t), T̃n(t)

)
>

k2

24T

)

≤ P

(
1 + sup

‖(u,v)‖≤k
|R̃n,f (u, v)| > k2

24T

)
≤ ε

6 .

Finally, by lemma 8, Mk
n,f is a martingale thus Doob’s maximal inequality

implies

P

(
sup

0≤t≤T∧τkn
Mn,f (t) > k2

24

)
≤

E
(
Mk

n,f (T )2
)

(k2/24)2 .

17



Lemma 8 also implies that
(
E
(
Mk

n,f (T )2))
n≥1 is a bounded sequence. Hence,

for k large enough,

P

(
sup

0≤t≤T∧τkn
Mn,f (t) > k2

24

)
≤ ε

6 .

As a consequence, there exist n2 ≥ 1 and kε ≥ 1 such that P(Bkεn ) ≤ ε/2 for all
n ≥ n2. We denote nε = n1 ∨ n2. We have proved that

∀n ≥ nε P
(
τkεn ≤ T

)
≤ P(Akεn ) + P(Bkεn ) ≤ ε.

Let us prove the second assertion of the lemma: for any η > 0, we have

P
(

sup
0≤t≤T

∣∣T̃n(t)
∣∣ > η

)
≤ P

(
sup

0≤t≤T∧τkεn

∣∣T̃n(t)
∣∣2 > η2

)
+ P

(
τkεn ≤ T

)
.

By formula (4), for n large enough,

P
(

sup
0≤t≤T

∣∣T̃n(t)
∣∣ > η

)
≤ ε

2 + P
(
τkεn ≤ T

)
≤ 3ε

2 .

By letting ε goes to 0, we obtain that
(
T̃n(t), t ≥ 0

)
n≥1 collapses to zero. This

ends the proof of the lemma.

Step 4: Tightness of (S̃n(t), t ≥ 0)n≥1 in D([0, T ],R)

Since (Xn(t), 0 ≤ t ≤ T ), n ≥ 1, and the limiting process (U(t), 0 ≤ t ≤ T )
belong to C([0, T ],R), it is enough to prove that (S̃n(t), t ≥ 0)n≥1 is relatively
compact for the weak convergence in D([0, T ],R), which is a Polish space (see the-
orem 12.2 of [2]). Prohorov theorem (theorem 5.1 of [2]) implies that it is enough
to prove that (S̃n(t), t ≥ 0)n≥1 is a tight sequence. As in [6] and [5], we use the
following tightness criterion:

Proposition 10. A sequence (ξn(t), 0 ≤ t ≤ T )n≥1 on D([0, T ],R) is tight if
(a) for any ε > 0, there exists M > 0 such that

sup
n≥1

P
(

sup
0≤t≤T

∣∣ξn(t)
∣∣ ≥M )

≤ ε,

(b) for any ε > 0 and η > 0, there exists δ > 0 such that

sup
n≥1

sup
τ1,τ2∈Tn

0≤τ1≤τ2≤(τ1+δ)∧T

P
( ∣∣ξn(τ2)− ξn(τ1)

∣∣ ≥ η ) ≤ ε,
where, for any n ≥ 1, Tn is the set of all the stopping times adapted to the
filtration generated by the process ξn.

Lemma 11. The sequence (S̃n(t), 0 ≤ t ≤ T )n≥1 is relatively compact for the
weak convergence on D([0, T ],R).
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Proof. It is enough to prove that (S̃n(t), 0 ≤ t ≤ T )n≥1 verifies conditions (a)
and (b) of proposition 10. In the proof of lemma 9, we proved that, for any
α > 0, there exists kα > 0 and nα ≥ 1 such that

sup
n≥nα

P
(
τkαn ≤ T

)
≤ α

and, for all n ≥ nα,

P

(
sup

0≤t≤T∧τkαn

∣∣S̃n(t)
∣∣ > kα

2

)
≤ α

2 .

We give ourselves ε > 0 and we denote α = 2ε/3. We obtain that, for all n ≥ nα,

P
(

sup
0≤t≤T

∣∣S̃n(t)
∣∣ > kα

2

)
≤ P

(
sup

0≤t≤T∧τkεn

∣∣S̃n(t)
∣∣ > kα

2

)
+ P

(
τkαn ≤ T

)
≤ 3α

2 = ε.

Hence condition (a) is verified.
We prove now condition (b): we give ourselves n ≥ 1 and ε, η, δ > 0. Let τ1 and τ2
be two stopping times adapted to the filtration generated by the process S̃n and
such that 0 ≤ τ1 ≤ τ2 ≤ (τ1 + δ) ∧ T . Setting α = 2ε/3, we have

P
(∣∣S̃n(τ2)− S̃n(τ1)

∣∣ ≥ η)
≤ P

(∣∣S̃n(τ2 ∧ τkαn )− S̃n(τ1 ∧ τkαn )
∣∣ ≥ η)+ P

(
τkαn ≤ T

)
≤ 1
η
E
( ∣∣S̃n(τ2 ∧ τkαn )− S̃n(τ1 ∧ τkαn )

∣∣ )+ α,

where we used Markov’s inequality. In the rest of this proof, we assume that f
is the function (x, y) 7−→ x. We have∣∣S̃n(τ2 ∧ τkαn )− S̃n(τ1 ∧ τkαn )

∣∣
≤ 1
n1/4

∣∣Hf

(
S̃n(τ2 ∧ τkαn ), T̃n(τ2 ∧ τkαn )

)
−Hf

(
S̃n(τ1 ∧ τkαn ), T̃n(τ1 ∧ τkαn )

)∣∣
+ 1√

n

∣∣Kf

(
S̃n(τ2 ∧ τkαn ), T̃n(τ2 ∧ τkαn )

)
−Kf

(
S̃n(τ1 ∧ τkαn ), T̃n(τ1 ∧ τkαn )

)∣∣
+
∫ τ2∧τkαn

τ1∧τkαn

∣∣G̃nFn,f(S̃n(u), T̃n(u)
)∣∣ du+

∣∣∣Mkα
n,f (τ2)−Mkα

n,f (τ1)
∣∣∣ .

We have

E
( ∣∣∣Mkα

n,f (τ2)−Mkα
n,f (τ1)

∣∣∣ )2
≤ E

((
Mkα

n,f (τ2)−Mkα
n,f (τ1)

)2
)

= E
(
E
[ (
Mkα

n,f (τ2)−Mkα
n,f (τ1)

)2
∣∣∣∣Gnτ1

])
,

where Gnt = σ
(
Mkα

n,f (s), 0 ≤ s ≤ t
)
for all t ≥ 0. By lemma 8, Mkα

n,f is a mar-
tingale bounded over L2 thus it is uniformly integrable. Martingale Stopping
Theorem (theorem 3.16 of [14]) implies that

Mkα
n,f (τ1) = E

[
Mkα

n,f (τ2)
∣∣∣∣Gnτ1

]
.
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Hence

E
[ (
Mkα

n,f (τ2)−Mkα
n,f (τ1)

)2
∣∣∣∣Gnτ1

]
= E

[
Mkα

n,f (τ2)2
∣∣∣∣Gnτ1

]
+Mkα

n,f (τ1)2 − 2Mkα
n,f (τ1)E

[
Mkα

n,f (τ2)
∣∣∣∣Gnτ1

]
= E

[
Mkα

n,f (τ2)2
∣∣∣∣Gnτ1

]
−Mkα

n,f (τ1)2

and thus

E
(
E
[ (
Mkα

n,f (τ2)−Mkα
n,f (τ1)

)2
∣∣∣∣Gnτ1

])
= E

(
E
[
〈Mkα

n,f ,M
kα
n,f 〉τ2 − 〈M

kα
n,f ,M

kα
n,f 〉τ1

∣∣∣∣Gnτ1

])
= E

(√
n

n∑
j=1

∫ τ2∧τkαn

τ1∧τkαn

(
∂Fn,f
∂xj

)2 (
Xn(
√
nu)
)
du

)
≤ Ckαf δ,

where Ckαf is the constant introduced in the proof of lemma 8 for k = kα. We get

E
( ∣∣∣Mkα

n,f (τ2)−Mkα
n,f (τ1)

∣∣∣ ) ≤√Ckαf δ.

Next, since f : (x, y) 7−→ x, proposition 7 yields

G̃nFn,f
(
S̃n(t), T̃n(t)

)
= − S̃n(t)3

2σ4 + R̃n,f
(
S̃n(t), T̃n(t)

)
and

∀k > 0 lim
n→+∞

sup
‖(x,y)‖≤k

∣∣R̃n,f (x, y)
∣∣ = 0.

Therefore∫ τ2∧τkαn

τ1∧τkαn

∣∣G̃nFn,f(S̃n(u), T̃n(u)
)∣∣ du ≤ ( k3

α

2σ4 + sup
‖(x,y)‖≤kα

∣∣R̃n,f (x, y)
∣∣) δ.

Finally∣∣Hf

(
S̃n(τ2 ∧ τkαn ), T̃n(τ2 ∧ τkαn )

)
−Hf

(
S̃n(τ1 ∧ τkαn ), T̃n(τ1 ∧ τkαn )

)∣∣ ≤ k2
α

σ2

and∣∣Kf

(
S̃n(τ2 ∧ τkαn ), T̃n(τ2 ∧ τkαn )

)
−Kf

(
S̃n(τ1 ∧ τkαn ), T̃n(τ1 ∧ τkαn )

)∣∣ ≤ 3k3
α

4σ4 .

Hence, for n large enough and δ small enough,

E
( ∣∣S̃n(τ2 ∧ τkαn )− S̃n(τ1 ∧ τkαn )

∣∣ ) ≤ ηα

2 .

We obtain
P
( ∣∣S̃n(τ2)− S̃n(τ1)

∣∣ ≥ η ) ≤ 3α
2 = ε.

Condition (b) of proposition 10 is then satisfied and this ends the proof of the
lemma.
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Step 5: Identification of the limiting process and convergence

Let us identify the limiting process. By lemma 11, there exists a subsequence(
S̃mn(t), t ≥ 0

)
n≥1 which converges in distribution to some process (U(t), t ≥ 0)

on D([0, T ],R). By lemma 9,
(
T̃mn(t), t ≥ 0

)
n≥1 converges in distribution to

the null process on D([0, T ],R).
For k > 0, we introduce the stopping time

τ̃kn = min
(
T , inf

t≥0

{ ∣∣T̃n(t)
∣∣ ≥ k}) .

If t ≥ T then P(τ̃kn ≤ t) = 1 and, if t < T , then

lim
n→+∞

P(τ̃kn ≤ t) ≤ lim
n→+∞

P
(

sup
0≤t≤T

∣∣T̃n(t)
∣∣ ≥ k) = 0,

by lemma 9. As a consequence (τ̃kn)n≥1 converges in distribution to T .
We give ourselves f ∈ C4(R). For any n ≥ 1 and t ∈ [0, T ],

Fn,f
(
S̃n(t), T̃n(t)

)
= f

(
S̃n(t)

)
+
(

1
n1/4Hf + 1

n1/2Kf

)(
S̃n(t), T̃n(t)

)
,

the functions Hf and Kf being continuous. Next, proposition 7 implies that,
for any n ≥ 1 and t ∈ [0, T ],

G̃nFn,f
(
S̃n(t), T̃n(t)

)
= Gσf

(
S̃n(t)

)
+ R̃n,f

(
S̃n(t), T̃n(t)

)
,

where R̃n,f is a continuous function on R2 such that

∀k > 0 lim
n→+∞

sup
(x,y)∈R2

‖(x,y)‖≤k

∣∣R̃n,f (x, y)
∣∣ = 0.

Let k > 0. For any t ≥ 0, we obtain

Mmn,f (t ∧ τ̃kn) L−→
n→+∞

Mf (t) = f(U(t ∧ T ))− f(U(0))−
∫ t∧T

0
Gσf(U(s)) ds.

For all n ≥ 1 and t ∈ [0, T ], we have

〈Mn,f ( · ∧ τ̃kn),Mn,f ( · ∧ τ̃kn)〉t =
√
n

n∑
j=1

∫ t∧τ̃kn

0

(
∂Ψn,f

∂xj

)2 (
Xn(
√
ns)
)
ds,

and, using formula (3), we get

√
n

n∑
j=1

(
∂ψn,f
∂xj

)2 (
Xn(
√
n · )

)
=
(
f ′
(
S̃n
)

+
[

1
n1/4

∂Hf

∂x
+ 1
n1/2

∂Kf

∂x

] (
S̃n, T̃n

))2

+
(

4T̃n
n1/4 + 4σ2

)([
1

n1/4
∂Hf

∂y
+ 1
n1/2

∂Kf

∂y

] (
S̃n, T̃n

))2

+ 4S̃n
n1/4

(
f ′
(
S̃n
)

+
[

1
n1/4

∂Hf

∂x
+ 1
n1/2

∂Kf

∂x

] (
S̃n, T̃n

))
×
([

1
n1/4

∂Hf

∂y
+ 1
n1/2

∂Kf

∂y

] (
S̃n, T̃n

))
.
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Assume that f has a compact support. Then we observe that there exists a
constant C̃kf such that

∣∣T̃n(t)
∣∣ ≤ k =⇒

√
n

n∑
j=1

(
∂ψn,f
∂xj

)2 (
Xn(
√
nt)
)
≤ C̃kf .

As a consequenceMn,f ( · ∧ τ̃kn) is a martingale and

∀t ≥ 0 sup
n≥1

E
(
Mn,f (t ∧ τ̃kn)2) ≤ C̃kfT < +∞.

This implies that, for all t ≥ 0,
(
Mmn,f (t ∧ τ̃kmn)

)
n≥1 is an uniformly integrable

family. ThereforeMf is a martingale.

Theorem 1.7 of chapter 8 of [9] implies that the martingale problem associated
to { (f,Gσf) : f ∈ C∞c (R) } admits a unique solution: it is the strong solution
of the differential stochastic equation

dz(t) = −z
3(t)
2σ4 dt+ dB(t), z(0) = 0,

where (B(t), t ≥ 0) is a standard Brownian motion. As a consequence the
limiting process (U(t), 0 ≤ t ≤ T ) is uniquely determined. Therefore(

Sn(
√
nt)

n3/4 , 0 ≤ t ≤ T
)
n≥1

=
(
S̃n(t), 0 ≤ t ≤ T

)
n≥1

converges in distribution to (U(t), 0 ≤ t ≤ T ) on D([0, T ],R). Finally, since the
sample paths of (U(t), 0 ≤ t ≤ T ) are continuous, this convergence in distribution
holds in C([0, T ],R). This ends the proof of theorem 1.

Appendix
A proposition on collapsing processes
Definition A.1. A sequence of real-valued stochastic processes (ξn(t), t ≥ 0)n≥1
collapses to zero if

∀ε > 0 ∀T > 0 lim
n→+∞

P
(

sup
0≤t≤T

|ξn(t)| > ε

)
= 0.

The concept of collapsing processes has been developed by Francis Comets and
Theodor Eisele in [6].

Proposition A.2. Let (ξn(t), t ≥ 0)n≥1 be a sequence of positive semimartin-
gales on a probability space (Ω,F ,P). For any n ≥ 1, we give ourselves an integer
mn ≥ 1 and independent standard Brownian motions (Bi)1≤i≤mn which gener-
ate a filtration (Ft)t≥0. We assume that there exist (Ft)t≥0-adapted processes
(ζn(t), t ≥ 0) and (Zn,i(t), t ≥ 0)1≤i≤mn such that

dξn(t) = ζn(t)dt+
mn∑
i=1

Zn,i(t)dBi(t).
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We suppose that there exist d > 1, positive constants C1, . . . , C5, increasing
sequences (κn)n≥1, (αn)n≥1, (βn)n≥1 and a sequence (τn)n≥1 of stopping times
verifying

κ
1
d
nα
−1
n −→

n→+∞
0, κ−1

n αn −→
n→+∞

0, κ−1
n βn −→

n→+∞
0, (C1)

∀n ≥ 1 E
[(
ξn(0)

)d]
≤ C1α

−d
n , (C2)

∀n ≥ 1 ∀t ∈ [0, τn] ζn(t) ≤ −κnC2ξn(t) + βnC3 + C4, (C3)

and

∀n ≥ 1 ∀t ∈ [0, τn]
mn∑
i=1

Zn,i(t)2 ≤ C5. (C4)

Then, for any ε > 0 and T > 0, there exist M > 0 and n0 ≥ 1 such that

sup
n≥n0

P
(

sup
0≤t≤T∧τn

ξn(t) > M
(
κ

1
d
nα
−1
n ∨ αnκ−1

n

))
≤ ε.

This is proposition 4.2 of [5]. It is a simple adaptation of the proposition in
appendix of [6].
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