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Abstract

We build and study a multidimensional version of the Curie-Weiss model
of self-organized criticality we have designed in [2]. For symmetric distri-
butions satisfying some integrability condition, we prove that the sum S,
of the randoms vectors in the model has a typical critical asymptotic
behaviour. The fluctuations are of order n3/* and the limiting law has a
density proportional to the exponential of a fourth-degree polynomial.

Résumé

Nous construisons et étudions une version multi-dimensionnelle du modele
d’Ising Curie-Weiss de criticalité auto-organisée que nous avons intro-
duit dans [2]. Pour des distributions vérifiant une certaine condition
d’intégrabilité, nous montrons que la somme S,, des variables aléatoires
du modéle a un comportement asymptotique critique typique. Les fluctua-
tions sont d’ordre n®/* et la loi limite admet une densité proportionnelle a
I’exponentielle d’un polynéme de degré quatre.
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1 Introduction

In [2] and [5], we introduced a Curie- Weiss model of self-organized criticality
(SOC): we transformed the distribution associated to the generalized Ising Curie-
Weiss model by implementing an automatic control of the inverse temperature
which forces the model to evolve towards a critical state. It is the model given
by an infinite triangular array of real-valued random variables (X¥);<r<, such
that, for all n > 1, (X},..., X") has the distribution

1 (g + -+ a,)? -
Z exp <2M L2z 402 >0 il;[ldp(fi)a

where p is a probability measure on R which is not the Dirac mass at 0, and
where Z,, is the normalization constant. We extended the study of this model
in [7], [8], [6] and [9]. For symmetric distributions satisfying some exponential
moments condition, we proved that the sum S,, of the random variables behaves
as in the typical critical generalized Ising Curie-Weiss model: the fluctuations are
of order n*/* and the limiting law is C exp(—Az?) dz where C' and \ are suitable
positive constants. Moreover, by construction, the model does not depend on any
external parameter. That is why we can conclude it exhibits the phenomenon of
self-organized criticality (SOC). Our motivations for studying such a model are
detailed in [2].

Let d > 1. In this paper we define a d-dimensional version of the Curie-Weiss
model of SOC, i.e, such that the X¥, 1 < k < n, are random vectors in R%.
Let us start by defining the d-dimensional generalized Ising Curie- Weiss model.
Let p be a symmetric probability measure on R¢ such that

Yo = 0 / exp(v||z||*) dp(z) < 0o
Rd

Assume that its covariance matrix

Z:/ 22 dp(z)
R

is invertible. It is known to be equivalent to non-degeneracy of p, i.e. that there
no hyperplane has full measure. The d-dimensional generalized Ising Curie-Weiss
model associated to p and to the temperature field T (which is here a d x d
symmetric positive definite matrix) is defined through an infinite triangular array
of random vectors (XF¥)i<k<n such that, for all n > 1, (X} ..., X") has the
distribution

Z.(T) exp (;ﬂ(T—l(m +otan), (e + -+ xn)>) il;[ldp(xi),

where Z,,(T') is a normalization. When d =1 and p = (d_1 + 61)/2, we recover
the classical Ising Curie-Weiss model. Let S,, = X! +---+ X" for any n > 1. By
extending the methods of Ellis and Newmann (see [4]) to the higher dimension,
we obtain that, under some « sub-Gaussian » hypothesis on p, if T — X is a
symmetric positive definite matrix, then

j% o NG (0,7(T-D)7'T),



the centered d-dimensional Gaussian distribution with covariance matrix
T(T —¥)7'X. If T =% (critical case) then

Sn Z
n3/4 n—+oo

Crexp (—0p(s1,...,84)) dsi -+ - dsq,

where C, is a normalization constant and ¢, is an homogeneous polynomial
of degree four in R[X7,..., X4] such that exp(—¢,) is integrable with respect
to the Lebesgue measure on R?. Detailed proofs of these results are given in
section 23 of [6]. These results highlight that the non-critical fluctuations are
normal (in the Gaussian sense) while the critical fluctuations are of order n®/4.

Now we try to modify this model in order to construct a d-dimensional SOC
model. As in [2], we search an automatic control of the temperature field T,
which would be a function of the random variables in the model, so that, when
n goes to 400, T' converges towards the critical value ¥ of the model. We start
with the following observation: if (Y, ),>1 is a sequence of independent random
vectors with identical distribution p, then, by the law of large numbers,

S, as
—n 2% oy
n n—+oo
where R

Vn > 1 Y= XX 4 XPHXT.

This convergence provides us with an estimator of ¥. If we believe that a similar
convergence holds in the d-dimensional generalized Ising Curie-Weiss model,
then we are tempted to « replace T' by ¥,,/n » in the previous distribution.
Hence, in this paper, we consider the following model:

The model. Let (X¥),>a 1<r<n be an infinite triangular array of random
vectors in R? such that, for any n > d, (X}, ..., X") has the distribution i, ,,
the probability measure on (R%)" with density

-1
1 1 n . n n
(xl,...,xn)r—>anexp 2<<Zl$z Iz) (Zl‘rl>7<zlxl>>

with respect to p®” on the set

D :{(acl,...,xn) € (RY™ : det (ixﬁw) >0},

=1

where

1 n ¢ -t n n n
Zy = /D,t exp | 5 <<§ T xi) (;:m) , (; x1>> };[1 dp(;).

For any n > d, we denote S, = X} + -+ X" € R? and
T =X HX0) 4+ XTHXD).

According to the construction of this model and according to our results in one
dimension, we expect that the fluctuations are of order n?/4. Our main theorem
states that they are indeed:



Theorem 1. Let p be a symmetric probability measure on R? satisfying the two
following hypothesis:

(H1) there exists vg > 0 such that / evoll=I® dp(z) < 00,
Rd
(H2) the p-measure of any vector hyperplane of R? is less than 1/+/e.

Let X be the covariance matriz of p and let My be the function defined on R by
vz € R My(z) = / (z,y)  dp(y).
Rd

Law of large numbers: Under iy, ,, (Sn/n, Tn/n) converges in probability to (0,%).

Fluctuation result: Under fin,,,

1 1
S, o exp(—mM4(E z)) dz

3/4 n oo 1 ’
" - /Rd exp (—12M4(Z_1u)> du

We prove that the matrix ¥ is invertible in subsection 2.a). In section 2.b), we
prove rigorously that this model is well-defined, i.e. Z,, €]0,4o00[ for any n > d.
After giving large deviation results in subsection 2.c), we show the law of large
numbers in section 3. Finally, in section 4, we prove that the function

z —> exp (—M4 (2_1/22> /12)

is integrable on R? and that S,,/ n3/4 converges in distribution to the announced
limiting distribution.

Remark : in the case where d = 1, we have already proved this theorem in [2], [8]
and [9]. Moreover we succeeded to remove hypothesis (H2) — which turns out
to be simply p({0}) < 1/+/e when d = 1 — with a conditioning argument. It
seems not immediate that such arguments could extend in the case where d > 2.
However this assumption together with hypothesis (H1) are technical hypothesis
and we believe that the result should be true if p is only a non-degenerate
symmetric probability measure on R? having a finite fourth moment.

2 Preliminaries

In this section, we suppose that p is a symmetric probability measure on R?
satisfying hypothesis (H1) and (H2).

a) X is a symmetric positive definite matrix

Since p satisfies hypothesis (H1), the covariance matrix ¥ is well-defined. It is
of course a symmetric positive semi-definite matrix. Let H be a hyperplane of
R<. If H is a vector hyperplane then, by hypothesis, p(H) < 1/y/e < 1. If H is
an affine (but not vector) hyperplane then,

p(H) = p(—H) = = (p(H) + p(—H)) <

<1,
2

DN | =



since p is symmetric and H N (—H) = &. In both cases p(H) < 1 thus p is
a non-degenerate probability measure on R?. As a consequence ¥ is positive
definite.

Notice that the hypothesis that p(H) < 1/4/€ is not involved on this point. We
only need that p is non-degenerate.

b) The model is well-defined

Let us prove that the model is well defined, i.e. Z,, €10, +oo] for any n > d.

Lemma 2. Letn > 1 and let 1, ..., x, be vectors in R, We denote
A=z 4+ + 2, Ty

* If n < d, then A, is non-invertible.
x If n =d, then A, is invertible if and only if (x1,...,x,) is a basis of RY.

x If n > d and if the vectors x1,...,x, span R%, then A, is invertible.
Proof. x Let n < d. If n < d, we put .41 = -+ = x4 = 0. We denote by B
the d x d matrix such that its columns are z1,...,24. We have then, for any
1<kl <d,
d d d
(B'B)ky = BriBri=Y wi(k)a;(l) =Y (x; i)es = (An)k..
i=1 i=1 i=1

Therefore A,, = BB and thus A, is invertible if and only if B is invertible. As
a consequence A, is invertible if and only if (z1,...,24) is a basis of R?. In the
case where n < d, B has at least a null column and thus is not invertible.

* Let n > d and assume that the vectors z1, ..., z, span R?. Then there exists
then 1 < iy < --+ < ig < n such that (x;,,...,2;,) is a basis of R%. As a
consequence, by the previous case, A, is the sum of a symmetric positive definite
matrix and n — d other symmetric positive semi-definite matrices. Therefore A,
is definite thus invertible. O

Let n > d. The non-degeneracy of p implies that its support is not included in a
hyperplane of R¢. As a consequence

P ({ (21, .. 2p) € (RNt (z1,...,24) is a basis of R*}) > 0.
The previous lemma yields
p®" ({ (z1,...,2n) € RO : 2 'y + - - 4 x,, 2,y is invertible }) > 0,

i.e. p®"(D;5) > 0. Therefore Z, > 0.
Let (-, -) be the usual scalar product on R? and || - || be the Euclidean norm.
We denote:

e S, the space of d X d symmetric matrices.

. SCJ[ the space of all matrices in S; which are positive semi-definite.

. Sj+ the space of all matrices in S which are positive definite.



We introduce the sets
A={(z,M)eR*xS] M —z'r €SS}

and
A ={(z,M) eR* xSt : M —z'r €S} }.

The two following lemmas guarantee that Z,, < +o0o pour tout n > 1.

Lemma 3. If (x, M) € A* then (M 'z, z) < 1.

Proof. The matrix M — z % is symmetric positive semi-definite. Hence
vyeR?  (z,y)? = (zzy,y) < (My.y).

Applying this inequality to y = M~ 'z, we get

(x, M~ z)? < (M 'z, x).

If # = 0 then (M~ 'z,2) = 0 < 1. If z # 0, since M € ST, we have
(M~'z,z) > 0 and thus (M 1x,x> <1 O
Let n > 1. For any (z1,...,7,) € (R)",

:%ixl = lexl—mm—li(x —m)x; —m) € S
i=1

n
i=1

Therefore, for any (z1,...,2,) € D

n’

<i;x“i§xztx1> €A

(B B )

Hence Z, < e™*/? < 400 and the model is well-defined for any n > d.

and thus

c) Large deviations for (S, /n,T,/n)
As in the one-dimensional case (see [2]), we introduce

Mfl
F:(z,M)e A — <27x,x>
For any n > d, the distribution of (S, /n,T,/n) under fi, , is
exp(nF (z, M)y ayenry don.p(x, M)

/ exp(nF(s,N))dv, ,(s, N)
A*

7

where 7, ,, is the law of

n

= (YY)

=1

N
3|
3|8

N——

|
—_



when Y7, ...,Y,, are independent random vectors with common law p.

We endow R? x S; with the scalar product given by

((SL’,M)7(y7N)) <CE y>+tr MN Zx1y1+zzml,jnl,j

i=1 j=1
We denote by || - ||a the associated norm. Notice that
VzeRY VA€, r(z2A) = ZZZZJCL”_ (Az, z).
=1 j=1

Let v, be the law of (Z, Z'Z) when Z is a random vector with distribution p.
We define its Log-Laplace A, by

Y(u, A) € R? x S, Alu, A) =1n /Rd < exp ((z,u) +tr(MA)) dv,(z, M)

—tn [ e ((u2) + (42.2)) dp(o),
Rd
and its Cramér transform I by

Y(z, M) € R? x 84 I(x, M) = sup ((z,u) +tr(MA) — A(u, A)).
(u,A)ERI XS,

Let Da and D; be the domains of R? x S; where A and I are respectively finite.
All these definitions generalize the case where d = 1, treated in [2] and [8].

For any (u, A) € R? x 84, we have

exp Au, A) < / oxp ([lull 1) + /(A [4]12) 4
< / exp (I, A)lla max((lz], 121P) dp(2)
< exp (|| (u, A)lla) + / exp (||(u, A)llal|2]2) dp(2).
Rd

Therefore hypothesis (H1) is sufficient to ensure that (0, O4) belongs to l%A, where
Oy denotes the d x d matrix whose coefficients are all zero. As a consequence
Cramér’s theorem (cf. [3]) implies that (¥, ,)n>1 satisfies the large deviation
principle with speed n and governed by the good rate function I.

3 Convergence in probability of (S, /n,T,/n)

We saw in the previous section that, under the hypothesis of theorem 1, the
sequence (U ,)n>1 satisfies the large deviation principle with speed n and
governed by the good rate function I. This result and Varadhan’s lemma (see [3])
suggest that, asymptotically, (S, /n,T,/n) concentrates on the minima of the
function I — F. In subsection 3.a), we prove that I — F has a unique minimum
at (0,%) on A* and we extend F' on the entire closed set A so that it remains
true on A. This is the key ingredient for the proof of the law of large numbers
in theorem 1, given in subsection 3.b).



a) Minimum de [ — F

Proposition 4. If p is a symmetric non-degenerate probability measure on RY,

then
M*l
Vo e R\N{0} VM e St I(x,M)> %

Moreover, if A is finite in a neighbourhood of (0,04), then the function I — F
has a unique minimum at (0,%) on A*.

Proof. Let x € RN\{0} and M € S*. By taking A = —M~'zzM~1/2 and
u= Mz, we get
(M—1z, x)

(u, ) +tr(AM) = (M 'z, z) — %tr(Mﬁlxtx) =—

As a consequence

(M~ 1z, )

I(z, M) >
(:I:, ) 2

1
—A (M_lx7 —2M_1xtacM_1) .

For any z € RY, we have M 'z = (M~ 'z, 2) = tr(z (M ~'2)) € R thus

1 M-t M1 2
——tr(zM et MY = —wtr(ztxM_l) = _w.
2 ) 5
Therefore
1 M1 2
A (Mlz,QMlxtle) = ln/ exp ((Mlx,z> - <;”Z>) dp(z).
Rd

By symmetry of p, we have, for any s € R?,

Lo (150 - 225 oo = [ e (62— B2 )
-3 (/R exp (<8’Z> - <2>> () + [ e (—<s,z> - <2>) dp<z>)

:/Rdcosh(<s,z>) exp (— : )dp(z)-

As a consequence

1
A (M‘lx, —2M_1astxM_1> =

In /Rd cosh ((M ™', 2)) exp (—W) dp(z).

It is straightforward to see that the function y — 1 — cosh(y) exp(—y?/2) is
non-negative on R and vanishes only at 0. Hence, for any z € R?,

(s,2)?

/Rd cosh ({5, 2)) exp (— ; > dp(=) < 1,




and equality holds if and only if p({z : (s, z) = 0}) = 1. The non-degeneracy of p
implied that the equality case only holds if s = 0. Applying thisto s = M 'z # 0,
we obtain

1
A (M‘lx, —2M_1a:txM_1> <0,
and thus I(z, M) > (M~ 1z, z)/2.
Suppose now that z =0 and M € S;"”'. Then

I(x, M) — 7<M_;x’ z)

If we assume that A is finite in a neighbourhood of (0, ...,0,04), then I(0, M) =0
if and only if M = ¥ (see proposition II1.4 of [6]). This ends the proof of the
proposition. O

= 1(0, M).

However, in order to apply Varadhan’s lemma, F must be extended to an upper
semi-continuous function on the entire closed set A. To this end, we put
y 1
V(z, M) € A\A F(m,M):i,
and it is easy to check that F' is indeed an upper semi-continuous function on A.
Now we prove the inequality in proposition 4 holds on A.

Let (z, M) € R? x S;. We denote by 0 < A1 < A2 < ..., < Ag the eigenvalues
(not necessary distinct) of M. There exists an orthogonal matrix P such that
M = PD'P, where D is the diagonal matrix such that D;; = \; for any
ie{l,...,d}. We have

I(x,M)=  sup ((z,u) +tr(PD'PA) — A(u, A))
(u,A)ERI XSy

= sup ((z,u) + tr(DA) — A(u, PA'P)).
(u,A)ERI XSy

Assume that M ¢ S;+ and denote by k = kj; > 1 the dimension of the kernel
of M. Let a €] — 00,0][. By taking u =0 and A the symmetric matrix such that

o a if 7= | € 1,...,]{1,
V(i,j) € {1,...,d} Ai,j:{ 0 otherwige, { }

we obtain

I(x,M) > —A(u, PA'P) = —ln/ exp (PA'Pz,z) dp(z),
R

i.e.

(th)j dp(2).

k

Ya € R I(a:,M)}—ln/ exp | a
Rd

J:

For any z € R%, we have

(th)j =0 <= zcKer(M)*,
1

k
j=



since (Pey,...,Pey) is a basis of Ker(M) (they are the eigenvectors of M
associated to the eigenvalue 0). As a consequence

k

Vz e RY exp az (th)j T Tker(aryL (2)-
j=1

Moreover the left term defines a function which is bounded above by 1. Therefore
the dominated convergence theorem implies that

/ exp | a
Rd :

k
Jj=

(th)j dp(z) — p(Ker(M)*),

a——0o0
1

hence
I(x, M) > — lnp(Ker(M)L),

so that I(z, M) > 1/2 as soon as p(Ker(M)*) < e~'/2. Since Ker(M)* is

included in some vector hyperplane of R%, we obtain the following proposition:

Proposition 5. If p is a symmetric probability measure on R satisfying hy-
pothesis (H1) and (H2), then I — F has a unique minimum at (0,%) on A.

b) Convergence of (S5,/n,T,/n) under i, ,
Let us first prove the following proposition, which is a consequence of Varadhan’s

lemma.

Proposition 6. Let p be a symmetric probability measure on R with a positive
definite covariance matriz . We have

1
liminf —In Z,, > 0.
n—+oo n

Suppose that p satisfies hypothesis (H1) and (H2). If A is a closed subset of
RY x Sy which does not contain (0,%), then

1 M-t
limsup — ln/ exp (w) dv,, ,(x, M) < 0.
n—+4oo N A*NA 2

Proof. The set AO, the interior of A*, contains (0,3) thus Cramér’s theorem
(cf. [3]) implies that

1 1 Mt
liminf — In Z,, = liminf — ln/* exp <n<2x,x>> AV, p(z, M)

n—-+oo N n—-+oco N

> liminf = In 7, ,(A") > — inf {I(%M) (M) € AU} —0.

n—4+oco n

We prove now the second inequality. Since p verifies hypothesis (H1), we have
that (0,04) € Da. Cramér’s theorem implies then that (7, ,)n>1 satisfies the
large deviation principle with speed n and the good rate function I. Since F' is

10



upper semi-continuous on the closed set A, a variant of Varadhan’s lemma (see
Lemma 4.3.6 of [3]) yields

1 Mt -
limsup — ln/ exp <n<x,x>> Avy, p(x, M)
n—+oo N A*NA 2
1 ~
< limsup — ln/ exp (nF'(z, M)) dvy, ,(x, M) < sup (F —1).
n—+oo T ANA ANA

Since p satisfies hypothesis (H2), proposition 5 implies that [ — F' has a unique
minimum at (0,%) on A. Since the closed subset A N A does not contain (0, X)
and since F' is upper semi-continuous and I is a good rate function, we have

sup (F—1T)<0.
ANA

This proves the second inequality of the proposition. O

Proof of the law of large numbers in theorem 1. Suppose that p is
symmetric and satisfies hypothesis (H1) and (H2). Let us denote by 6, , the
law of (S, /n,T,/n) under fi, ,. Let U be an open neighbourhood of (0,X) in
R% x S;. Proposition 6 implies that

1 1 M-t
limsup —In#6,, ,(U¢) = limsup — ln/ exp (n(a:,x)) dv,, ,(x, M)
n—+4oo 1 n—+4oo T A*NU<C 2

1
— liminf —1In Z,, < 0.
n—4oo n

Hence there exist € > 0 and ng > 1 such that 6,, ,(U°) < e "¢ for any n > no.
Therefore, for any neighbourhood U of (0, %),

. ~ Sn Tn c _
i ((557) €)=

i.e. under fi, ,, (Sn/n,T,/n) converges in probability to (0, ). O

. . . . —-1/2
4 Convergence in distribution of T}, / S, /nt/4
under /i, ,
In this section, we generalize theorem 1 of [9] to the higher dimension in order
to prove our fluctuation result.

Theorem 7. Let p be a symmetric non-degenerate probability measure on R?
such that

/R el dp(z) < oo

Let X the covariance matrix of p and let My be the function defined in theorem 1.
Then, under fin ,,

11



In the proof of this theorem, we show that the limiting law is well defined. Notice
that, if d = 1, then ¥~/2 = ¢! and
prazt
VeeR My (S7%z) =
o

Hence theorem 7 is indeed a generalization of theorem 1 of [9]

a) Proof of theorem 7

Let (X¥),,>a. 1<k<n be an infinite triangular array of random variables such that,
for any n >d, (X.,...,X) has the law [1,, ,. Let us recall that

Vn>1l  S,=X!+-+X" and T, =X X))+ +XTHXD).

and that T, € S(fr almost surely. We use the Hubbard-Stratonovich transforma-
tion: let W be a random vector with standard multivariate Gaussian distribution
and which is independent of (X¥),>a 1<k<n. Let n > 1 and f be a bounded
continuous function on R?. We put

w 1 -1/2
En_IE{f<nl/4+nl/4Tn / sn)]

We introduce (Y;);>1 a sequence of independent random vectors with common
distribution p. We denote

n n 1/2
Ap=YYi, B,= (Z}ﬂg) and B, = {det(B2) > 0}.
i=1

i=1

We have

w 1
]an /I;d f(w + WB” An)
1 2
X exp <2<B;2An,An> — HU;H ) dw].

We make the change of variables z = n~1/4 (w + B;lAn) in the integral and
we get

E,=C,E

1z, / f(z)exp ( ﬁ#‘z”z + n1/4<z,Bn1An>> dz]
R4

where C,, = n¥/4Z-1(2rn)~%2, Let Uy,...,Up,€1,...,n be independent random
variables such that the distribution of U; is p and the distribution of ¢; is
(6_1 +01)/2, for any 7 € {1,...,n}. Since p is symmetric, the random variables
e1Us, ..., e,U, are also independent with common distribution p. Therefore

]lgn /Rd f(z)exp (— M +n1/4<z,Bn1<aneiUi> >> dZ] .

12

E,=C,E




In the case where the matrix B2 = U;U; + - - - + U, U, is invertible, we denote

n —1/2
Vie{l,...,n}  aj,= (ZthU]) U;.
j=1

By using Fubini’s theorem and the independence of ¢;,U;, ¢ > 1, we obtain

o, [ SG@)ew (—\/ﬁ!”)
(Ul,...,Un)> dZ].

x E <Hexp< Ve (z am>)
15, /]Rdf(z)exp (—W) exp <z”: In cosh (n1/4<z,a,»7n>)> dz].

We define the function g by

E, =C,E

Therefore

E, = C,E

2
Vy € R g(y):lncoshy—%.

It is easy to see that g(y) < 0 if y > 0. Therefore

Z(z,ai,n>2 = Z(z, (ain tai,n)z> = <z, (Z ain tai,n> z> = (z,142) = ||z||2
i=1

i=1 i=1

As a consequence

E,=0C, El]lg / f(z exp(Zg 1/4 zam>)> dz}.

i=1

Now we use Laplace’s method. Let us examine the convergence of the term in
the exponential: for any z € R? and i € {1,...,n}, the Taylor-Lagrange formula
states that there exists a random variable &, ; such that

n(z,a;n)? n3/2<z,ai7n>5
12 nl/45)

g(’l’Ll/4<Z, ai7n>) = - 9(5) (gnﬂ)

Let z € RY. We have
nZzazn Z zU> —lz<\/ﬁBglz,Ui>4.
i=1 i=1 i

We denote ¢, = v/nB;,'z. We have

D DR A (D IR(IN (Y 12 Ui (Us)s0:

1<j1,52,73,Ja<d



Since p is non-degenerate, its covariance matrix X is invertible. Moreover p has
a finite fourth moment thus the law of large numbers implies that
G 23 3TV,

n—-+oo

and that, for any (41, j2, js, 1) € {1,...,d}*,

n—-+4oo

1 « a.s
- D W), (U)o (U3, Ui)s = /Rd YirYjaYiaYia AP(Y)-
i=1
As a consequence

& 4 as —1/2 )
nz;@',a,m} n—>—+>oo My (Z z).
1=

Since p has a finite fifth moment, we prove similarly that

n3/22<z,ai7n>5 AR M (271/22),

Pt n—-+oo
where Ms(z) = [5a(z, y)° dp(y) for any z € R?. Finally, by a simple computation,

we see that ¢(® is bounded over R. Hence

n

. 1 _
Vz e R? Zg(n1/4<z,ai,n>) as _EM4 (E 1/22) )

. n—+oo
i=1

Lemma 8. There exists ¢ > 0 such that

n

VzeR?T VYn>1 gn1/4<z,ain> \,L‘
290 o)) € ST

N

Proof. We define h by

Yy e R\{0}  h(y)=

It is a non-negative continuous function on R\{0}. Since g(y) ~ —y*/12 in the
neighbourhood of 0, the function h can be extended to a function continuous
on R by putting h(0) = —1/12. Next we have

1+ Incoshy 1
= y2 X —_ = s

Yy € R\{0 h
YER} ) o2
so that h(y) goes to —1/2 when |y| goes to +o0c. Therefore h is bounded by
some constant —c with ¢ > 0. Hence, for any z € Rand n > 1,

n n (n1/4<z,a¢,n>)4

Zg(n1/4<z, ai7n>) < —nc% Z

i=1 i—1 1+ (”1/4<27ai,n>)2.

We easily check that z — 2%/(1 + z) is convex on [0, +00[. As a consequence

n 2 2
1/4 (% i (4 (z,ai0)) ) cl|z]|*
g(n'*(z,a;n)) < —ne s =— | 7
1 L4 2300 (n/4(z, a5n)) 1+ z]2/v/n

n
1=
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since (2,a1.,)% 4+ -+ (z,an,)% = 1. O
If || z|| < n'/* then 14 |2]|?//n < 2 and thus, by the previous lemma,

n cllz||*
Ls. Ljzjnrra exp (Zg(n1/4<zaai,n>)> < exp <|2> .

i=1
Thus the dominated convergence theorem implies that

z —> exp (—M4 (E_l/Qz) /12)

is integrable on R? and that

E l]lgn /]Rd Ly, cnr/a f (2) exp (Zg(nl/‘l(z,ai,n») dz]

=1

1 _
— y f(z)exp (-12M4 (Z 1/22)> dz.

n—-+o0o

If ||z]| > n'/* then 1+ ||2)|2/v/n < 2||2|?/v/n and thus, by the previous lemma,

E l]lgn /]Rd L) jsniva f(z)exp (Zg(nl/‘l(z,ai,n))) dz]

=1

evallzl*Y  _ [Ifllo (22
< IIfIIOO/RdeXP (— 9 bz =" gz WS

1z, /Rdf(z)exp (Zg 1/4 (z,ain )) dz}

i=1

— f(z)exp (—1M4 (2_1/22)) dz.
Rd

n——+oo 12

and thus

En
on_ R
Ch

If we take f =1, we get

1 Z,(2m)/? 1 —1/2
o n;)oo /Rd exp fEMAL <Z z) dz.

Summarizing, we have proved that

w 1

1
exp (—12M4(2_1/22)) dz
——+ =T 2S =,
n1/4 n

nt - /]Rd exp <—12M4(21/2u)> du

Since (Wn~1/1),,; converges in distribution to 0, Slutsky’s lemma (theorem 3.9
of [1]) implies the convergence in distribution of theorem 7.

We remark that we needed the hypothesis that p has a finite fifth moment
in order to use Taylor-Lagrange formula. This hypothesis may certainly be
weakened by assuming instead that

Je >0 / |2]|4T€ dp(z) < +oo.
R4
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b) Proof of the fluctuation result in theorem 1.

In section 3, we proved the law of large numbers in theorem 1. It implies that,
under fin , Tn/n converges in probability to 3. Moreover hypothesis (H 1)
implies that (0,04) € DA and thus p has finite moments of all orders. Theorem 7
and Slutsky lemma yield

1
g 7N\ 1/2 1 exp <—12M4(E—1z)> dz
3n == X—T_l/QS Z, .
n3/4 nl/4 n—o0 1 _1
exp f—M4(E u) du
Rd 12
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