Devoir maison no 18

À rendre le lundi 5 mai 2025

Exercice 1: Une suite qui s'essouffle

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit $u \in \mathcal{L}(E)$. Pour tout $p \in \mathbb{N}$, on note $K_p = \mathrm{Ker}\,(u^p)$ et $I_p = \mathrm{Im}\,(u^p)$. On rappelle que par convention $u^0 = \mathrm{Id}_E$ et que donc $K_0 = \{0\}$.

- 1) Montrer que les suites $(K_p)_{p\geqslant 0}$ et $(I_p)_{p\geqslant 0}$ sont respectivement croissante et décroissante pour l'inclusion. En déduire la monotonie de la suite $(\dim(K_p))_{p\in\mathbb{N}}$.
- 2) Montrer qu'il existe n_0 tel que $K_{n_0} = K_{n_0+1}$.
- 3) Montrer que pour tout $p \geqslant n_0$, $K_p = K_{p+1}$.
- 4) Montrer que pour tout $p \geqslant n_0$, $I_p = I_{p+1}$.
- 5) Montrer que I_{n_0} et K_{n_0} sont supplémentaires.
- 6) Soit $p \in \mathbb{N}$. On note v la restriction de u à I_p et w la restriction de u à I_{p+1} .
 - a) Justifier le fait que v et w sont respectivement à valeurs dans I_{p+1} et I_{p+2} .
 - b) Montrer que $\operatorname{Ker} v = \operatorname{Ker} u \cap I_p$, puis que $\operatorname{Im}(v) = I_{p+1}$.
 - c) Montrer que la suite $(\dim(K_{p+1}) \dim(K_p))_{p \in \mathbb{N}}$ est décroissante : la suite $(K_p)_{p \in \mathbb{N}}$ « s'essoufle ».

Exercice 2: Endomorphismes cycliques

Soit E un espace vectoriel. Soit $p \in \mathbb{N}^*$. On dit qu'un endomorphisme f de E est cyclique d'ordre p s'il existe un vecteur $x_0 \in E$ vérifiant les trois conditions suivantes :

- $f^p(x_0) = x_0$.
- la famille $\left(x_0,f(x_0),f^2(x_0),\ldots,f^{p-1}(x_0)\right)$ est constituée de vecteurs deux à deux distincts.
- la famille $(x_0, f(x_0), f^2(x_0), \dots, f^{p-1}(x_0))$ est génératrice de E.

La famille $(x_0, f(x_0), f^2(x_0), \dots, f^{p-1}(x_0))$ est alors appelée un cycle de f.

Partie A: Un exemple

Dans cette partie, on suppose que E est un \mathbb{K} -espace vectoriel de dimension B. On note $\mathcal{B}=(e_1,e_2,e_3)$ une base de E. Considérons l'endomorphisme f de E tel que

$$f(e_1) = e_1 + e_2 - 2e_3,$$
 $f(e_2) = 2e_1 + e_2 - 2e_3,$ $f(e_3) = 2e_1 + 2e_2 - 3e_3.$

- 1) Exprimer $f^2(e_1)$, $f^3(e_1)$ et $f^4(e_1)$ en fonction de e_1 , e_2 et e_3 .
- 2) Montrer que $(e_1, f(e_1), f^2(e_1))$ est une base de E.
- 3) Justifier que $(e_1, f(e_1), f^2(e_1), f^3(e_1))$ est un cycle de E.
- 4) Montrer que $f^4 = \operatorname{Id}_E$.

Partie B : Le cas général

Dans cette partie, on suppose que E est un espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On se donne un endomorphisme f de E cyclique d'ordre p et $\left(x_0, f(x_0), f^2(x_0), \ldots, f^{p-1}(x_0)\right)$ un cycle de f.

- 1) Justifier que $x_0 \neq 0$.
- 2) Montrer que $p \geqslant n$.

- 3) a) Montrer que $f^p = \operatorname{Id}_E$.
 - b) En déduire que f est un automorphisme et préciser sa réciproque.
- 4) On note m le plus grand des entiers naturels k tels que la famille $\left(x_0,f(x_0),f^2(x_0),\dots,f^{k-1}(x_0)\right)$ est libre.
 - a) Justifier l'existence de m.
 - b) Montrer que, pour tout $k \geqslant m$, $f^k(x_0) \in \operatorname{Vect} (x_0, f(x_0), f^2(x_0), \dots, f^{m-1}(x_0))$.
 - c) En déduire que m=n et que $(x_0,f(x_0),f^2(x_0),\ldots,f^{m-1}(x_0))$ est une base de E.
- 5) a) Montrer qu'il existe $(a_0,\ldots,a_{n-1})\in\mathbb{K}^n$ tel que $f^n(x_0)=\sum_{j=0}^{n-1}a_jf^j(x_0).$
 - b) En déduire que $f^n = \sum_{k=0}^{n-1} a_k f^k$.